Lithologic Reservoirs ›› 2012, Vol. 24 ›› Issue (6): 60-65.doi: 10.3969/j.issn.1673-8926.2012.06.011

Previous Articles     Next Articles

Application of constant-rate mercury penetration technique to study of pore throat characteristics of tight reservoir: A case study from the Upper Triassic Yanchang Formation in Ordos Basin

LI Weicheng 1,2, ZHANG Yanmei 1,2, WANG Fang 1,2, ZHU Jing 1,2, YE Bo 1,2   

  1. 1. Research Institute of Exploration and Development, Petrochina Changqing Oilfield Company, Xi’an 710018, China; 2. National Engineering Laboratory of Exploration and Development of Low-permeability Oil and Gas Field, Xi’an 710018, China
  • Online:2012-12-20 Published:2012-12-20

Abstract:

The lower pore and throat radius parameters from conventional mercury penetration technique affect the reservoir evaluation and later development technique policy constituting. Based on constant-rate mercury penetration technique, the microcosmic pore throat characteristics of tight reservoir of Yanchang Formation of Ordos Basin were analyzed, and the alterations of pore throat characteristic parameters were also quantitatively and clearly characterized. The average pore radius of tight reservoir is about 153 μm and has no correlation with the permeability. The average throat radius is about 0.34 μm and there is a great positive correlation between the throat radius and permeability. The average ratio of pore and throat radius is 556, and there is a negative correlation between the ratio and permeability. While mercury enters into the bigger pores controlled by wide throats for little resistance, the influence of throats is unclear. With input mercury gradually increasing and capillary pressure rising, throats gradually control whole mercury saturation. Using advanced technique to change reservoir formation to increase or enlarge throat radius and decrease the ratioofpore and throat radius, in order to increase permeability, so the development of tight oil can have a good result.

Key words: surface seismic, borehole seismic, crosswell seismic, reverse-time migration, noise suppression

[1] 林森虎,邹才能,袁选俊,等.美国致密油开发现状及启示[J].岩性油气藏,2011,2(34):25-30.
[2] 贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-135.
[3] 何顺利,焦春艳,王建国,等.恒速压汞与常规压汞的异同[J].断块油气田,2011,18(2):235-237.
[4] 付金华,郭正权,邓秀芹.鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J].古地理学报,2005,7(1):35-42.
[5] 杨华,窦伟坦,刘显阳,等.鄂尔多斯盆地三叠系延长组长7 沉积相分析[J].沉积学报,2010,28(2):254-262.
[6] 傅强,李益.鄂尔多斯盆地晚三叠世延长组长6 期湖盆坡折带特征及其地质意义[J].沉积学报,2010,28(2):294-297.
[7] 于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-25.
[8] 邹才能,杨智,陶士振,等.纳米油气与源储共生型油气聚集[J].石油勘探与开发,2012,39(1):13-16.
[9] 何自新,贺静.鄂尔多斯盆地中生界图册[M].北京:石油工业出版社,2004:134-135.
[10] 伍小玉,罗明高,聂振荣,等.恒速压汞技术在储层孔隙结构特征研究中的应用———以克拉玛依油田七中区及七东区克下组油藏为例[J].天然气勘探与开发, 2012,35(3):28-30.
[11] 朱玉双,柳益群,赵继勇,等.不同流动单元微观渗流特征研究———以华池油田长 3 油藏华 152 块为例[J].石油实验地质,2008,30(1):103-108.
[12] 孙卫,曲志浩,李劲峰.安塞特低渗透油田见水后的水驱油机理及开发效果分析[J].石油实验地质,1999,21(3):256-259.
[13] 王瑞飞,沈平平,宋子齐,等.特低渗透砂岩油藏储层微观孔喉特征[J].石油学报,2009,30(4):560-563.
[14] 高辉,解伟,杨建鹏,等.基于恒速压汞技术的特低—超低渗砂岩储层微观孔喉特征[J].石油实验地质,2011,33(2):206-211.
[1] CHEN Keyang. Application of reverse-time migration technology to complex structural imaging in Daqing exploration area [J]. Lithologic Reservoirs, 2017, 29(6): 91-100.
[2] CHEN Keyang, CHEN Shumin, L I Lailin, WU Qingling, FAN Xingcai, LIU Zhenkuan. Directional one-way wave field separating numerical simulation of the seismic wave equation and reverse-time migration [J]. Lithologic Reservoirs, 2014, 26(4): 130-136.
[3] CHEN Keyang, WU Peixi, YANG Wei. Application of diffusion filtering method to the seismic data processing [J]. Lithologic Reservoirs, 2014, 26(1): 117-122.
[4] CHEN Keyang. Reverse-time migration analysis of several seismic observation models [J]. Lithologic Reservoirs, 2013, 25(1): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: