Lithologic Reservoirs ›› 2013, Vol. 25 ›› Issue (1): 75-80.doi: 10.3969/j.issn.1673-8926.2013.01.015

Previous Articles     Next Articles

Geochemical characteristics of hydrocarbon source rocks of the Lower Cretaceous in the Chagan Sag

LIU Jun1, LUO Xiaoping1, LI Hui1, LI Xinjun2   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China; 2. Research Institute of Exploration and Development, Sinopec Zhongyuan Oilfield Company, Puyang 457001, China
  • Online:2013-02-20 Published:2013-02-20

Abstract:

Lacustrine dark mudstones of the lower Cretaceous Bayinggebi Formation and Suhongtu Formation are the main hydrocarbon source rocks in the Chagan Sag. This paper revealed the geochemical characteristics of the source rocks on the basis of the abundance, types and maturity of organic matter and biomarker analysis. The results show that hydrocarbon source rocks have high abundance of organic matter and belong to good hydrocarbon source rocks, and the type of organic matter belongs to transition type. The organic matter type of Bayinggebi Formation is superior to that of Suhongtu Formation. The former is mainly of Ⅱ1- Ⅱ2, while the latter is mainly of Ⅱ2- Ⅲ. The organic matter of the hydrocarbon source rocks has a high degree of thermal evolution and is at maturity stage, even a high-post maturity stage. The hydrocarbon source rocks occurred in the weak oxidation-weak reducing environment, and the organic source material is mainly lower aquatic plants mixed with some higher plants.

Key words: ultra-low permeability reservoir, water flooding, reservoir protection, damage factors, Xinjiang Oilfield

[1] 林卫东.查干凹陷原油地球化学特征与油源对比[J].石油与天然气地质;2000,21(3):249-251.
[2] 叶加仁,杨香华.银—额盆地查干凹陷温压场特征及其油气地质意义[J].天然气工业,2003,23(2):15-18.
[3] 徐会永,蒋有录,张立强,等.查干凹陷构造样式及其构造演化[J].油气地质与采收率,2008,15(4):13-15.
[4] 高渐珍,吴光兴,张放东,等.查干凹陷毛敦次凸起的形成演化及其与油气的关系[J].中国海上油气(地质),2002,16(6):389-393.
[5] 裴俊萍,焦志峰.查干凹陷碎屑岩储集层特征及有利区带预测[J].科技情报开发与经济,2007,17(20):144-146.
[6] 王国力,吴茂炳.查干凹陷下白垩统含油气系统特征及勘探方向[J].石油与天然气地质,2005,26(3):366-369.
[7] 陈昭年,陈晓巍,王明艳,等.内蒙古查干凹陷火山岩油藏成藏模式[J].现代地质,2008,22(4):628-632.
[8] 李仁甫,陈清棠,范迎风,等.内蒙古查干凹陷下白垩统层序地层格架与沉积体系分布[J].现代地质,2009,23(5):783-790.
[9] 陈建平,何忠华,魏志彬,等.银额盆地查干凹陷基本生油条件研究[J].石油勘探与开发,2001,28(6):23-27.
[10] 陈建平,何忠华,魏志彬,等.银额盆地查干凹陷原油地化特征及油源对比[J].沉积学报,2001,19(2):299-305.
[11] 黄第藩,李晋超.中国陆相油气生成[M].北京:石油工业出版社,1982:85-109.
[12] 中国石油天然气总公司. SY/T5735-1995 陆相烃源岩地球化学评价方法[S].北京:石油工业出版社,1995:1-19.
[13] 成海燕,李安龙,龚建明.陆相烃源岩评价参数浅析[J].海洋地质动态,2008,24(2):7-10.
[14] 龚大兴,林金辉,唐云凤,等.上扬子地台北缘古生界海相烃源岩有机地球化学特征[J].岩性油气藏,2010,22(3):31-37.
[15] 曾艳涛,文志刚,宋换新.南陵—无为地区下三叠统海相烃源岩评价与标定[J].海相油气地质,2006,11(4):34-38.
[16] 王斌,吴明,王绪龙,等.准噶尔盆地腹部三叠系烃源岩特征与评价[J].西南石油大学学报,2011,33(2):12-20.
[17] 王铁冠.生物标志物地球化学研究[M].武汉:中国地质大学出版社,1990:152-164.
[19] Powell T G,McKirdy D M. Relationship between ration of pristine to phytane crude oil composition and geological environments in Australia[J].Nature,1973,243:37-39.
[19] Hunt J M. Petroleum geochemistry and geology [M]. The Second Edition. New York:W. H. Freeman & Co. Ltd.,1996.
[1] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[2] BAI Jiajia, SI Shuanghu, TAO Lei, WANG Guoqing, WANG Longlong, SHI Wenyang, ZHANG Na, ZHU Qingjie. Mechanism of DES+CTAB composite oil displacement agent system to improve oil recovery of low-permeability tight sandstone reservoirs [J]. Lithologic Reservoirs, 2024, 36(1): 169-177.
[3] QIAN Zhen, MAO Zhiqiang, ZHENG Wei, HUANG Yuanjun, CHEN Lifeng, ZENG Huiyong, LI Gang, SONG Ai. Experiment on profile control and water plugging of rubber particles in inter-well single fractured-vuggy reservoir [J]. Lithologic Reservoirs, 2023, 35(4): 161-168.
[4] SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield [J]. Lithologic Reservoirs, 2022, 34(4): 150-158.
[5] SUN Liang, LI Baozhu, LIU Fan. Efficient management of water flooding reservoirs based on Pollock streamline tracing [J]. Lithologic Reservoirs, 2021, 33(3): 169-176.
[6] DAI Bo, WANG Leifei, ZHUANG Jian, YUAN Weibin, WANG Xuesheng. Experiment of minimum miscible pressure of CO2 flooding in ultra-low permeability reservoir [J]. Lithologic Reservoirs, 2020, 32(2): 129-133.
[7] DU Xulin, DAI Zong, XIN Jing, LI Hailong, CAO Renyi, LUO Donghong. Three-dimensional water flooding physical simulation experiment of horizontal well in heavy oil reservoir with strong bottom water [J]. Lithologic Reservoirs, 2020, 32(2): 141-148.
[8] ZHANG Yichao, CHEN Minfeng, QU Dan, MAO Meifen, YANG Ziyou. Prediction method of well pattern infilling effect for ultra-low permeability reservoir in X oilfield [J]. Lithologic Reservoirs, 2020, 32(1): 144-151.
[9] LONG Ming, LIU Yingxian, CHEN Xiaoqi, WANG Meinan, YU Dengfei. Optimization adjustment of injection-production structure based on meandering river reservoir architecture [J]. Lithologic Reservoirs, 2019, 31(6): 145-154.
[10] JIA Hongbing, ZHAO Hui, BAO Zhijing, ZHAO Guangjie, MAO Wei, LI Yaguang. New method for evaluating water flooding development effect and its oil field application [J]. Lithologic Reservoirs, 2019, 31(5): 101-107.
[11] AN Jie, TANG Meirong, CAO Zongxiong, WANG Wenxiong, CHEN Wenbin, WU Shunlin. Transformation of development model of horizontal wells in ultra-low permeability and low-pressure reservoirs [J]. Lithologic Reservoirs, 2019, 31(5): 134-140.
[12] HUANG Guangqing. Influence of ion composition and salinity on recovery of water flooding with low salinity [J]. Lithologic Reservoirs, 2019, 31(5): 129-133.
[13] XIONG Shan, WANG Xuesheng, ZHANG Sui, ZHAO Tao, PANG Fei, GAO Lei. Physical properties variation of WXS reservoir after long-term water flooding [J]. Lithologic Reservoirs, 2019, 31(3): 120-129.
[14] LYU Duanchuan, LIN Chengyan, REN Lihua, SONG Jinpeng, DI Xifeng. Flow unit combination and water flooding model of distributary channel sand body in eastern Xing-6 block [J]. Lithologic Reservoirs, 2018, 30(5): 103-108.
[15] YIN Daiyin, XIANG Junhui, WANG Dongqi. Classification of Fuyang oil reservoir with ultra-low permeability around placanticline of Daqing Oilfield [J]. Lithologic Reservoirs, 2018, 30(1): 150-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: