Lithologic Reservoirs ›› 2013, Vol. 25 ›› Issue (2): 86-91.doi: 10.3969/j.issn.1673-8926.2013.02.015

Previous Articles     Next Articles

Feasibility study of air foam flooding low temperature oxidation process in“three low” reservoir: A case study from Tang 80 block in Ganguyi Oilfield

ZHANG Xinchun1, YANG Xingli2, SHI Xiaowei1   

  1. 1. Institute of Exploration and Development,Ganguyi Oil Production Plant,Yanchang Oilfield Company Ltd., Yan’an 716005,China; 2. Department of Exploration,Yanchang Oilfield Company Ltd., Yan’an 716000,China
  • Online:2013-04-20 Published:2013-04-20

Abstract:

The air foam flooding technology is of low-cost and high-profile drive capacity, and has broad application prospects in “three low” reservoir in Ganguyi Oilfield, which is characterized by strong heterogeneity, lack of water and low well production. In order to validate low temperature oxidation feasibility of air foam flooding, and ensure the safety of air injection, through researching application status of this technology, studying indoor dynamic and static low temperature oxidation simulation experiment and actual field test detection, this paper studied oil and air oxidation in different pressures and different temperatures, also monitored and analyzed the oxygen content in field test. The result shows that low temperature oxidation reactions can occur in this “three-low” reservoir and the reaction rate is intensified with increasing pressure.

Key words: well trajectory, horizontal well, inflow performance

[1] 李士伦,刘建仪,孙雷,等.天然气工程[M].第2 版.北京:石油工业出版社,2008:32-40.
[2] 雷群,李熙喆,万玉金,等.中国低渗透砂岩气藏开发现状及发展方向[J].天然气工业,2009,29(6):1-3.
[3] 刘慈群.垂直裂缝地层中流体的渗流[J].石油勘探与开发,1987,14(3):69-73.
[4] 刘建军,刘先贵,胡雅衽.低渗透岩石非线性渗流规律研究[J].岩石力学与工程学报,2003,22(4):556-562.
[5] Sampath K,William K C. Factors affecting gas slippage in tight sandstones of Cretaceous age in the Uinta Basin[R]. SPE 9872,1982.
[6] Klinkenberg L J. The permeability of porous media to liquids and gases[J]. API Drilling and Production Practice,1941,(2):200-213.
[7] Thomas R D,Ward D C. Effect of overburden pressure and water saturation on gas permeability of tight sandstone cores[J]. Journal of Petroleum Technology,1972,24(2):120-124.
[8] George D V. Application of stress-dependent rock properties in reservoir studies[R]. SPE 86979,2004.
[9] 王道成,李闽,谭建为,等.气体非线性渗流研究[J].大庆石油地质与开发,2007,26(6):74-77.
[10] 熊健,郭平,王平,等.低渗透气藏双重渗流耦合流动的产能方程[J].大庆石油学院学报,2011,35(5): 25-29.
[11] 熊健,郭平,李凌峰.滑脱效应和启动压力梯度对低渗透气藏水平井产能的影响[J].大庆石油学院学报,2011,35(2):78-81.
[12] 傅春梅,唐海,邹一锋,等.应力敏感对苏里格致密低渗气井废弃压力及采收率的影响研究[J].岩性油气藏,2009,21(4):96-98.
[13] 王晓琴,吴聚,冉艳,等.非线性渗流对异常高压气藏产能的影响[J].岩性油气藏,2012,24(4):125-128.
[14] 卢晓敏.气藏动态预测物质平衡法研究[J].天然气勘探与开发,1999,22(3):29-39.
[15] Engler T W,Kelly M. New approach to gas material balance in tight gas reservoirs[R]. SPE 62883,2000.
[16] 程时清,李菊花,李相方,等.用物质平衡-二项式产能方程计算气井动态储量[J].新疆石油地质,2005,26(2):181-182.
[17] 赵金省,杨玲,张明,等.榆林气田气井动态预测[J].辽宁工程技术大学学报:自然科学版,2009,28(4):593-594.
[18] Moghadam S,Jeje O,Mattar L. Advanced gas material balance in simplified format[J]. Journal of Canadian Petroleum Technology,2010,50(1):90-98.
[19] 孙贺东,毛小平,康博.矩形气藏的产量递减规律及动态预测方法[J].天然气工业,2011,31(7):40-42.
[20] 熊健,邱桃,郭平,等.非线性渗流下低渗气藏压裂井产能评价[J].石油钻探技术,2012,40(3):92-96.
[1] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[2] ZHOU Hao, LIANG Lixia. Calculation method of investigation radius of horizontal wells [J]. Lithologic Reservoirs, 2024, 36(1): 157-168.
[3] YANG Zhaochen, LU Yingbo, YANG Guo, HUANG Chun, YI Dalin, JIA Song, WU Yongbin, WANG Guiqing. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil [J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
[4] CAI Hui, QU Dan, CHEN Minfeng. Reserve producing law of combined well pattern and technology strategy of horizontal well infilling: A case study from HD oilfield in Bohai Sea [J]. Lithologic Reservoirs, 2021, 33(4): 147-155.
[5] ZHANG Yunlai, CHEN Jianbo, ZHOU Haiyan, ZHANG Jilei, ZHANG Wei. Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir [J]. Lithologic Reservoirs, 2020, 32(6): 146-153.
[6] JIANG Ruizhong, ZHANG Chunguang, GAO Yihua, GENG Yanhong, YU Hui, LI Haoyuan. Fractal nonlinear seepage model of horizontal wells in fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2019, 31(6): 118-126.
[7] AN Jie, TANG Meirong, CAO Zongxiong, WANG Wenxiong, CHEN Wenbin, WU Shunlin. Transformation of development model of horizontal wells in ultra-low permeability and low-pressure reservoirs [J]. Lithologic Reservoirs, 2019, 31(5): 134-140.
[8] XU Youjie, LIU Qiguo, WANG Rui, LIU Yicheng. Pressure transient of fractured horizontal well with complex fracture distribution in composite reservoir [J]. Lithologic Reservoirs, 2019, 31(5): 161-168.
[9] WANG Bei, LIU Xiangjun, SIMA Liqiang, XU Wei, LI Qian, LIANG Han. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application [J]. Lithologic Reservoirs, 2019, 31(2): 124-133.
[10] HUANG Quanhua, LIN Xingyu, TONG Kai, LU Yun, FU Yunhui. Prediction of water breakthrough time for horizontal well in non-Darcy flow edge water gas reservoirs [J]. Lithologic Reservoirs, 2019, 31(1): 147-152.
[11] LI Chuanliang, ZHU Suyang, CHAI Gaijian, DONG Fengling. Comparison of productivity of vertical wells with horizontal wells [J]. Lithologic Reservoirs, 2018, 30(N): 12-16.
[12] LI Jiqing, LIU Yuewu, HUANG Can, GAO Dapeng. Multi-stage fracturing horizontal well interference test model and its application [J]. Lithologic Reservoirs, 2018, 30(6): 138-144.
[13] WANG Xinjie. Calculation method for productivity of fractured horizontal well in tight gas reservoir [J]. Lithologic Reservoirs, 2018, 30(5): 161-168.
[14] ZHANG Yunlai, LIAO Xinwu, HU Yong, LI Tingli, SU Jinchang. Development models for offshore heavy oil field in high water cut stage [J]. Lithologic Reservoirs, 2018, 30(4): 120-126.
[15] SU Hao, LEI Zhengdong, ZHANG Diqiu, LI Junchao, JU Binshan, ZHANG Zeren. Volume fracturing parameters optimization of horizontal well in tight reservoir [J]. Lithologic Reservoirs, 2018, 30(4): 140-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: