Lithologic Reservoirs ›› 2013, Vol. 25 ›› Issue (2): 112-115.doi: 10.3969/j.issn.1673-8926.2013.02.020

Previous Articles     Next Articles

Coalbed methane is adsorption gas underground

LI Chuanliang1, PENG Chaoyang2, ZHU Suyang1   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; 2. PetroChina Coalbed Methane Company Ltd., Beijing 100028, China
  • Online:2013-04-20 Published:2013-04-20

Abstract:

Coalbed methane development is growing fast. However, the occurrence state of coalbed methane is still in query, for which a study was conducted in this paper. Source rock of mudstone has a small amount of organic material, which can only absorb quite small amount of methane recoverable without economic value. However, coal has a large amount of organic material, which can absorb a large amount of methane recoverable with economic value. Organic material of coal rock is polarized weak on molecules, is likely to adsorb methane molecules with weak polarization. The strongly polarized minerals in coal rock are likely to adsorb water molecules with strong polarization. Coal rock consists of matrix block and fractures, which can be called fractured mudstone. The methane in free gas generated in matrix migrated to fractures and was lost away, and finally only adsorption gas was stored and kept. It needs to produce water and decrease formation pressure to develop coalbed methane. Pressure drawdown can degas the formation water, and desorb adsorption methane, and generate free gas. Then free gas migrates to fractures and will be produced to surface. There is critical production pressure for coalbed methane development. The process of coalbed methane production does not have diffusion phenomena.

Key words: quantitative characterization, aggregate index, permeability diversity coeficient, heterogeneity, reef flat reservoir, Puguang Gas Field

[1] 李传亮,朱苏阳.页岩气其实是自由气[J].岩性油气藏,2013,25(1):1-3. 
[2] 傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学 出版社,2003:1-8,73-95. 
[3] 苏现波,林晓英.煤层气地质学[M].北京:煤炭工业出版社,2007:16-37. 
[4] 李增学,魏久传,刘莹.煤地质学[M].北京:地质出版社,2007:1-15. 
[5] 赵澄林,朱筱敏.沉积岩石学[M].第 3 版.北京:石油工业出版 社,2001:117-124,222-227.
[6] 张厚福,方朝亮,高先志,等.石油地质学[M].北京:石油工业出 版社,1999:83-87. 
[7] 李传亮.地下没有亲油的岩石[J].新疆石油地质,2011,32(2):197-198. 
[8] 天津大学物理化学教研室.物理化学[M].第 2 版.北京:高等教 育出版社,1983:173-179. 
[9] 李传亮,彭朝阳.煤层气的开采机理研究[J].岩性油气藏,2011,23(4):9-11.
[1] HONG Zhibin, WU Jia, FANG Peng, YU Jinyang, WU Zhengyu, YU Jiaqi. Heterogeneity of soluble organic matter in shale and occurrence state of shale oil under nanoconfinement [J]. Lithologic Reservoirs, 2024, 36(6): 160-168.
[2] TANG Shukai, GUO Tiankui, WANG Haiyang, CHEN Ming. Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 169-177.
[3] LI Qihui, REN Dazhong, NING Bo, SUN Zhen, LI Tian, WAN Cixuan, YANG Fu, ZHANG Shiming. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 76-88.
[4] PENG Miao, ZHANG Lei, TAO Jinyu, ZHAO Kang, ZHANG Xianghui, ZHANG Changmin. Quantitative characterization of gravel roundness of sandy conglomerates of Triassic Baikouquan Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(5): 121-129.
[5] ZHANG Jigang, DU Meng, CHEN Chao, QIN Ming, JIA Ninghong, LYU Weifeng, DING Zhenhua, XIANG Yong. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2022, 34(4): 89-102.
[6] YI Zhifeng, ZHANG Shangfeng, WANG Yaning, XU Enze, ZHAO Shaohua, WANG Yuyao. Quantitative characterization of point bar sand bodies in meandering river under different curvatures: A case study of modern deposition of Baihe river in the source area of Yellow River [J]. Lithologic Reservoirs, 2022, 34(1): 34-42.
[7] CHAI Yu, WANG Guiwen, CHAI Xin. Reservoir heterogeneity and genesis of the second member of Xujiahe Formation of Triassic in Jinqiu block,Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(4): 29-40.
[8] LONG Shengfang, WANG Yushan, LI Guoliang, DUAN Chuanli, SHAO Yingming, HE Yongmei, CHEN Lingyun, JIAO Xu. Heterogeneity characteristics of tight reservoir of lower submember of He 8 member in Su 49 block,Sulige gas field [J]. Lithologic Reservoirs, 2021, 33(2): 59-69.
[9] WANG Lihui, XIA Huifen, HAN Peihui, CAO Ruibo, SUN Xianda, ZHANG Siqi. Microscopic characteristics of remaining oil distribution and quantitative characterization of its producibility [J]. Lithologic Reservoirs, 2021, 33(2): 147-154.
[10] LIANG Zhikai, LI Zhuo, LI Lianxia, JIANG Zhenxue, LIU Dongdong, GAO Fenglin, LIU Xiaoqing, XIAO Lei, YANG Youdong. Relationship between multifractal characteristics of pore size and lithofacies of shale of Shahezi Formation in Changling fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2020, 32(6): 22-35.
[11] CAO Jiangjun, CHEN Chaobing, LUO Jinglan, WANG Xi. Impact of authigenic clay minerals on micro-heterogeneity of deep water tight sandstone reservoirs: a case study of Triassic Chang 6 oil reservoir in Heshui area,southwestern Ordos Basin [J]. Lithologic Reservoirs, 2020, 32(6): 36-49.
[12] GUO Juan, ZHAO Difei, LIANG Xiaobo, YANG Kun, LI Haoxuan, LONG Daixi. Quantitative characterization of shale nanopore structure: a case study of Wufeng Formation in southeastern Sichuan [J]. Lithologic Reservoirs, 2020, 32(5): 113-121.
[13] QI Tao, HU Yong, LI Qian, ZHAO Zihan, ZHANG Chun, LI Tao. Miscible displacement simulation with dispersion [J]. Lithologic Reservoirs, 2020, 32(5): 161-169.
[14] ZHENG Yufei, LI Xiang, XU Jingliang, ZHENG Weijie, YU Meng. Influence of vertical heterogeneity of reservoirs on in-situ CO2 profile control and flooding effects [J]. Lithologic Reservoirs, 2020, 32(2): 122-128.
[15] CHEN Yiting, LIU Luofu, WANG Mengyao, DOU Wenchao, XU Zhengjian. Characteristics and controlling factors of Chang 6 and Chang 7 reservoirs in southwestern Ordos Basin [J]. Lithologic Reservoirs, 2020, 32(1): 51-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] GENG Yanfei, ZHANG Chunsheng, HAN Xiaofeng, YANG Dachao. Study on formation mechanism of low resistivity gas bearing reservoir in Anyue-Hechuan area[J]. Lithologic Reservoirs, 2011, 23(3): 70 -74 .
TRENDMD: