Lithologic Reservoirs ›› 2015, Vol. 27 ›› Issue (3): 11-17.doi: 10.3969/j.issn.1673-8926.2015.03.002

Previous Articles     Next Articles

Fracture spacing optimization for horizontal well alternating fracturing and influencing factors

YANG Zhaozhong1, SU Zhou 1,2, LI Xiaogang1, ZHANG Cheng3, XIE Zhongcheng4, DENG Ke5   

  1.  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University ,Chengdu 610500 , China ; 2. Research Institute of Oil and Gas Engineering , PetroChina Tarim Oilfield Company , Korla 841000 , Xinjiang , China ; 3. Tarim Engineering Company , Chuanqing Drilling Engineering Company Limited , CNPC , Korla 841000 , Xinjiang , China ; 4. Engineering Technical Operation Center of CNOOC Shanghai Branch , Shanghai 200030 , China ; 5. Northeast Sichuan Gas Field , PetroChina Southwest Oil and Gas Field Company , Dazhou 635000 , Sichuan , China
  • Online:2015-05-26 Published:2015-05-26

Abstract:

 For creation of large-scale effective complex fracture networks of unconventional oil/gas plays, fracture spacing for alternating fracturing should be optimized. Started from the effect of total induced stresses on initial horizontal stress anisotropy, the total induced stresses computational model of two adjacent hydraulic fractures with different fracture height and fracture net pressure was built. Subsequently, optimization approaches for critical fracture spacing of the first two hydraulic fractures and optimal fracture initiation position of the third one were proposed. The analysis result shows that critical fracture spacing between the first two hydraulic fractures decreased with the increase of Poisson’s ratio, and increased with the increase of fracture height and fracture net pressure; the optimal fracture initiation position of the third fracture apart from the first one decreased with the increase of Poisson’s ratio, and increased with the increase of fracture height. However, fracture net pressure has negligible impact on the optimal fracture initiation position of the third fracture. Finally, with comparison and analysis of a case study, the optimization results of the proposed approaches were proved to be much more advantageous and economic over the existed one, which is of significant guidance for creation of complex fracture networks with alternating fracturing technology in unconventional oil/gas reservoirs.

Key words:  alternating fracturing, complex volumetric fracture networks, stress shadow, principle of superposition, fracture spacing optimization

参考文献(References):

[1] 祝彦贺,胡前泽,陈桂华,等.北美 A-29 区块页岩油资源潜力分析[J].岩性油气藏,2013,25(3):66-70.

Zhu Yanhe,Hu Qianze,Chen Guihua,et al. Study on resource potential of shale oil in A-29 Block,North America[J]. Lithologic Reservoirs,2013,25(3):66-70. 

[2]王民,石蕾,王文广,等.中美页岩油、致密油发育的地球化学特征对比[J].岩性油气藏,2014,26(3):67-73.

Wang Min,Shi Lei,Wang Wenguang,et al. Comparative study on geochemical characteristics of shale oil between China and U.S.A[J]. Lithologic Reservoirs,2014,26(3):67-73.

[3]李传亮,朱苏阳.页岩气其实是自由气[J].岩性油气藏,2013,25(1):1-3.

Li Chuanliang,Zhu Suyang. Shale gas is free gas underground[J].Lithologic Reservoirs,2013,25(1):1-3.

[4]邹才能,杨智,张国生,等.常规-非常规油气“有序聚集”理论认识及实践意义[J].石油勘探与开发,2014,41(1):14-27.

Zou Caineng,Yang Zhi,Zhang Guosheng,et al. Conventional and unconventional petroleum“orderly accumulation”:Concept and practical significance[J]. Petroleum Exploration and Development,

2014,41(1):14-27.

[5]林森虎,邹才能,袁选俊,等.美国致密油开发现状及启示[J].岩性油气藏,2011,23(4):25-30.

Lin Senhu,Zou Caineng,Yuan Xuanjun,et al. Status quo of tight oil exploration in the United States and its implication[J]. Lithologic Reservoirs,2011,23(4):25-30.

[6]黄籍中.四川盆地页岩气与煤层气勘探前景分析[J].岩性油气藏,2009,21(2):116-120.

Huang Jizhong. Exploration prospect of shale gas and coal-bed methane in Sichuan Basin[J]. Lithologic Reservoirs,2009,21(2): 116-120.

[7]Mayerhofer M J,Lolon E P,Warpinski N R,et al. What is stimulated reservoir volume?[R]. SPE 119890,2010:89-98.

[8]Soliman M Y,Loyd E,Adams D. Geomechanics aspects of multiple fracturing of horizontal and vertical wells[R]. SPE 86992,2008: 217-228.

[9]吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术———内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.

Wu Qi,Xu Yun,Wang Xiaoquan,et al. Volume fracturing technology of unconventional reservoirs:Connotation,optimization design and implementation[J]. Petroleum Exploration and Development, 2012,39(3):352-358.

[10]吴奇,胥云,王腾飞,等.增产改造理念的重大变革———体积改造技术概论[J].天然气工业,2011,31(4):7-12.

Wu Qi,Xu Yun,Wang Tengfei,et al. The revolution of reservoir stimulation:An introduction of volume fracturing[J]. Natural Gas Industry,2011,31(4):7-12.

[11]吴奇,胥云,刘玉章,等.美国页岩气体积改造技术现状及对我国的启示[J].石油钻采工艺,2011,33(2):1-7.

Wu Qi,Xu Yun,Liu Yuzhang,et al. The current situation of stimulated reservoir volume for shale in U.S. and its inspiration to China [J]. Oil Drilling & Production Technology,2011,33(2):1-7.

[12]张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述[J]. 岩性油气藏,2013,25(2):116-122.

Zhang Xiaolong,Zhang Tongwei,Li Yanfang,et al. Research advance in exploration and development of shale gas[J]. Lithologic Reservoirs,2013,25(2):116-122.

[13]Soliman M Y,East L,Augustine J. Fracturing design aimed at enhancing fracture complexity[R]. SPE 130043,2010:1-20.

[14]East L,Soliman M Y,Augustine J . Methods for enhancing far-field complexity in fracturing operations[R]. SPE 133380,2010:1-17.

[15]Jo H. Optimizing fracture spacing to induce complex fractures in a hydraulically fractured horizontal wellbore[R]. SPE 154930, 2012: 1-14.

[16]Jo H. Optimal fracture spacing of a hydraulically fractured horizontal wellbore to induce complex fractures in a reservoir under high in-situ stress anisotropy[R]. IPTC 16717,2013:1-12.

[17]邵尚奇,田守嶒,李根生,等.水平井缝网压裂裂缝间距的优化[J].石油钻探技术,2014,42(1):86-90.

Shao Shangqi,Tian Shouceng,Li Gensheng,et al. Fracture spacing optimization for fracture-network fracturing in horizontal wells[J].Petroleum Drilling Techniques,2014,42(1):86-90.

[18]李小刚,罗丹,李宇,等.同步压裂缝网形成机理研究进展[J]. 新疆石油地质,2013,34(2):228-231.

Li Xiaogang,Luo Dan,Li Yu,et al. Advances of mechanism study of fracture networks formed by simultaneous fracturing process[J]. Xinjiang Petroleum Geology,2013,34(2):228-231.

[19]Green A E,Sneddon I N. The distribution of stress in the neighbourhood of a flat elliptical crack in an elastic solid[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1950,46(1): 159-163.

[20]Bunger A P,Zhang X,Jeffrey R G. Parameters affecting the interaction among closely spaced hydraulic fractures[R]. SPE 140426,2011:292-306.

[21]刘立峰,张士诚.通过改变近井地应力场实现页岩储集层缝网压裂[J].石油钻采工艺,2011,33(4):71-74.

Liu Lifeng,Zhang Shicheng. Net fracturing by changing the surrounding in-situ stress in shale reservoirs[J]. Oil Drilling & Production Technology,2011,33(4):71-74.

[22]纪宏博,李贵长,光新军,等.页岩气储层改造有效性分析[J]. 石油天然气学报(江汉石油学院学报),2011,33(9):145-149.

Ji Hongbo,Li Guichang,Guang Xinjun,et al. Analysis of fracture efficiency in shale gas reservoirs reconstruction[J]. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute),2011, 33(9):145-149.

[23]Fisher M K,Heinze J R,Harris C D,et al. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping[R]. SPE 90051,2004:1-11.

[24] Kresse O,Weng X,Gu H,et al. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J].Rock Mechanics and Rock Engineering,2013,46:555-568.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: