Lithologic Reservoirs ›› 2016, Vol. 28 ›› Issue (2): 56-63.doi: 10.3969/j.issn.1673-8926.2016.02.008

Previous Articles     Next Articles

Characteristics of source-reservoir-caprock assemblage and hydrocarbon accumulation of Yanchang Formation in Binchang block, Ordos Basin

Chen Hehe 1,2, Zhu Xiaomin1, Chen Chunfang2, Yin Wei2   

  1.  1. College of Geosciences , China University of Petroleum , Beijing 102249 , China ; 2. Sinopec Research Institute of Exploration & Production , Beijing 100083 , China
  • Online:2016-03-20 Published:2016-03-20

Abstract:

Based on the data of geochemistry, cores, logs and oil test, this paper analyzed the characteristics of sourcereservoir-caprock assemblage and hydrocarbon accumulation of Yanchang Formation in Binchang block, Ordos Basin. The result shows that the Zhangjiatan shale at the bottom of Chang 7 oil reservoir is hydrocarbon source rock of Yanchang Formation in Binchang block. The sand bodies of delta front underwater distributary channel and gravity flow in Chang 8 to Chang 6 oil reservoir set act as reservoir. The dark mudstone of semi deep-deep lake facies in Chang 9 to Chang 4+5 oil reservoir set act as caprock. Four sets of source-reservoir-caprock assemblages were divided: (1) Chang 7 as source, Chang 91 as reservoir and upper Chang 9 as caprock; (2) Chang 7 as source, Chang 81 as reservoir and Chang 7 as caprock; (3) Chang 7 as source, Chang 72 as reservoir and upper Chang 7 as caprock; (4) Chang 7 as source, Chang 63 as reservoir and Chang 6-Chang 4 as caprock. According to the configuration relationship between source and reservoir and the stacking patterns of source, reservoir and cap, the source-reservoir-caprock assemblage can be divided into successive type (2 and 3) and discontinuous type (1 and 4). The successive type of assemblage is controlled by the distribution of Zhangjiatan shale, reservoirs quality and the development degree of fault-fracture system. The discontinuous type of assemblage is controlled by the oil source, faults, the distance between source and reservoir as well as the distribution of favorable reservoirs. Successive type of assemblage has advantages in hydrocarbon injection, seal quality and higher oil saturation compared to discontinuous type assemblage.

Key words: high resolution , sequence stratigraphy , base level cycle , sedimentary facies , Yanchang Formation , Ordos Basin

[1] Guan Yunwen, Su Siyu, Pu Renhai, Wang Qichao, Yan Sujie, Zhang Zhongpei, Chen Shuo, Liang Dongge. Palaeozoic gas reservoir-forming conditions and main controlling factors in Xunyi area,southern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(6): 77-88.
[2] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[3] YIN Hu, QU Hongjun, SUN Xiaohan, YANG Bo, ZHANG Leigang, ZHU Rongxing. Characteristics of deep-water deposits and evolution law of Triassic Chang 7 reservoir in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 145-155.
[4] MOU Feisheng, YIN Xiangdong, HU Cong, ZHANG Haifeng, CHEN Shijia, DAI Linfeng, LU Yifan. Distribution characteristics and controlling factors of tight oil of Triassic Chang 7 member in northern Shaanxi area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(4): 71-84.
[5] DUAN Yifei, ZHAO Weiwei, YANG Tianxiang, LI Fukang, LI Hui, WANG Jianan, LIU Yuchen. Source-reservoir characteristics and accumulation rules of shale gas of Permian Shanxi Formation in Yan'an area, Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 72-83.
[6] WANG Hongbo, ZHANG Lei, CAO Qian, ZHANG Jianwu, PAN Xing. Sedimentary model of fluvial fan of Permian He-8 member in Ordos Basin and its exploration significance [J]. Lithologic Reservoirs, 2024, 36(3): 117-126.
[7] CAO Jiangjun, WANG Xi, WANG Liuwei, LI Cheng, SHI Jian, CHEN Zhaobing. Characteristics and main controlling factors of interbedded shale oil reservoirs of Triassic Chang 7 member in Heshui area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 158-171.
[8] LI Qihui, REN Dazhong, NING Bo, SUN Zhen, LI Tian, WAN Cixuan, YANG Fu, ZHANG Shiming. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 76-88.
[9] LEI Tao, MO Songyu, LI Xiaohui, JIANG Nan, ZHU Chaobin, WANG Qiao, QU Xuejiao, WANG Jia. Sandbody superimposition patterns and oil and gas exploration significance of Permian Shanxi Formation in Daniudi gas field,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 147-159.
[10] ZHAI Yonghe, HE Dengfa, KAI Baize. Tectonic-depositional environment and prototype basin evolution of Middle-Late Permian in Ordos Basin and adjacent areas [J]. Lithologic Reservoirs, 2024, 36(1): 32-44.
[11] WANG Tianhai, XU Duonian, WU Tao, GUAN Xin, XIE Zaibo, TAO Huifei. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 98-110.
[12] LONG Shengfang, HOU Yunchao, YANG Chao, GUO Yixuan, ZHANG Jie, ZENG Yali, GAO Nan, LI Shanghong. Sequence stratigraphy and evolution of Triassic Chang 7 to Chang 3 mebers in Qingcheng area,southwestern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(1): 145-156.
[13] SU Qin, ZENG Huahui, XU Xingrong, WANG Deying, MENG Huijie. Key techniques of high-resolution processing of desert seismic data and its application in Agedem area,Niger [J]. Lithologic Reservoirs, 2023, 35(6): 18-28.
[14] LUO Beiwei, YIN Jiquan, HU Guangcheng, CHEN Hua, KANG Jingcheng, XIAO Meng, ZHU Qiuying, DUAN Haigang. Characteristics and controlling factors of high porosity and permeability limestone reservoirs of Cretaceous Cenomanian in the western United Arab Emirates [J]. Lithologic Reservoirs, 2023, 35(6): 63-71.
[15] DU Jiangmin, CUI Zihao, JIA Zhiwei, ZHANG Yi, NIE Wancai, LONG Pengyu, LIU Boyuan. Sedimentary characteristics of Ma 55 sub-member of Ordovician Majiagou Formation in Sulige area,Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(5): 37-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] GENG Yanfei, ZHANG Chunsheng, HAN Xiaofeng, YANG Dachao. Study on formation mechanism of low resistivity gas bearing reservoir in Anyue-Hechuan area[J]. Lithologic Reservoirs, 2011, 23(3): 70 -74 .
TRENDMD: