Lithologic Reservoirs ›› 2016, Vol. 28 ›› Issue (2): 127-132.doi: 10.3969/j.issn.1673-8926.2016.02.018

Previous Articles    

Influencing factors for temperature field distribution of gas hydrate based on finite element method

Li Bingfan1, Pan Zhen1, Shang Liyan2, Ma Guiyang1, Wei Liwa3, Ma Peimin4   

  1.  1. College of Petroleum Engineering , Liaoning Shihua University , Fushun 113001 , Liaoning , China; 2. College of Chemistry , Chemical Engineering and Environmental Engineering , Liaoning Shihua University , Fushun 113001 , Liaoning , China ; 3. School of Mechanical Engineering , Liaoning Shihua University , Fushun 113001 , Liaoning , China ; 4. Special Oil Development Company , PetroChina Liaohe Oilfield Company , Panjin 124010 , Liaoning , China )
  • Online:2016-03-20 Published:2016-03-20

Abstract:

 Gas hydrate has became the most promising clean energy in the 21st century, and note hot exploration is considered as the most effective mining method. Taking a permafrost gas hydrate mining area as an example, on the basis of hydrate dissociation kinetics model, this paper established gas hydrate decomposition thermodynamic model based on the finite volume method, and analyzed the influencing factors for temperature field distribution of gas hydrate. The results show that gas hydrate in a high temperature region is gradually increased and the rate of decomposition is accelerated with the gradual increase of water injection rate and unchanged other conditions. With the gradual increase of porosity and water temperature, high-temperature region is basically the same trends. However, the gas temperature will increase in the surface. Note hot exploration was carried out in this mining area, and the hydrate dissociation velocity is fastest with the water injection rate at 6 m/s and water temperature at 80 ℃, with better economic efficiency. This result can provide theoretical guidance for the heat mining practice.

Key words: tight sandstone gas reservoir , gas-water two phase , productivity , horizontal well , stress sensitivity , slip effect

[1] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[2] SU Hao, GUO Yandong, CAO Liying, YU Chen, CUI Shuyue, LU Ting, ZHANG Yun, LI Junchao. Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield [J]. Lithologic Reservoirs, 2024, 36(5): 178-188.
[3] ZHOU Hao, LIANG Lixia. Calculation method of investigation radius of horizontal wells [J]. Lithologic Reservoirs, 2024, 36(1): 157-168.
[4] YANG Zhaochen, LU Yingbo, YANG Guo, HUANG Chun, YI Dalin, JIA Song, WU Yongbin, WANG Guiqing. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil [J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
[5] XUE Nan, SHAO Xiaozhou, ZHU Guangyou, ZHANG Wenxuan, QI Yalin, ZHANG Xiaolei, OUYANG Siqi, WANG Shumin. Geochemical characteristics and formation environment of source rocks of Triassic Chang 7 member in northern Pingliang area,Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(3): 51-65.
[6] LUO Jinchang, TIAN Jijun, MA Jinghui, YAN Jiaqi, LIANG Yafei, HU Zhuohao. Sedimentary environment and organic matter enrichment mechanism of Permian Lucaogou Formation in Jiye-1 well area,Jimsar Sag [J]. Lithologic Reservoirs, 2022, 34(5): 73-85.
[7] XIAO Wei, ZHANG Bing, YAO Yongjun, WANG Yan, YANG Hongyu, YANG Kai. Lithofacies and sedimentary environment of shale of Permian Longtan Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 152-162.
[8] HE Xian, YAN Jianping, WANG Min, WANG Jun, GENG Bin, LI Zhipeng, ZHONG Guanghai, ZHANG Ruixiang. Relationship between pore structure and oil production capacity of low permeability sandstone: A case study of block F154 in south slope of Dongying Sag [J]. Lithologic Reservoirs, 2022, 34(1): 106-117.
[9] CAI Hui, QU Dan, CHEN Minfeng. Reserve producing law of combined well pattern and technology strategy of horizontal well infilling: A case study from HD oilfield in Bohai Sea [J]. Lithologic Reservoirs, 2021, 33(4): 147-155.
[10] ZHANG Yunlai, CHEN Jianbo, ZHOU Haiyan, ZHANG Jilei, ZHANG Wei. Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir [J]. Lithologic Reservoirs, 2020, 32(6): 146-153.
[11] SONG Xuanyi, LIU Yuetian, MA Jing, WANG Junqiang, KONG Xiangming, REN Xingnan. Productivity forecast based on support vector machine optimized by grey wolf optimizer [J]. Lithologic Reservoirs, 2020, 32(2): 134-140.
[12] JIANG Ruizhong, ZHANG Chunguang, GAO Yihua, GENG Yanhong, YU Hui, LI Haoyuan. Fractal nonlinear seepage model of horizontal wells in fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2019, 31(6): 118-126.
[13] LIU Na, ZHOU Zhaohua, REN Dazhong, NAN Junxiang, LIU Dengke, DU Kun. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir: a case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige Gas Field [J]. Lithologic Reservoirs, 2019, 31(6): 14-25.
[14] XU Youjie, LIU Qiguo, WANG Rui, LIU Yicheng. Pressure transient of fractured horizontal well with complex fracture distribution in composite reservoir [J]. Lithologic Reservoirs, 2019, 31(5): 161-168.
[15] SU Penghui, XIA Zhaohui, LIU Lingli, DUAN Lijiang, WANG Jianjun, XIAO Wenjie. Main controlling factors of productivity and reasonable development methods of low-rank coalbed methane in block M of Australia [J]. Lithologic Reservoirs, 2019, 31(5): 121-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: