技术方法

改进的粒子群波阻抗反演方法与应用

  • 车洪昌 ,
  • 任耀宇 ,
  • 刘汉平 ,
  • 刘钊
展开
  • 成都理工大学地球物理学院
王丽,1985 年生,女,成都理工大学在读硕士研究生,研究方向为地球物理信号与信息处理。地址:( 610059)成都理工大学榕 树园十二单元6-2。E-mail:wanglimeili@163.com

网络出版日期: 2011-02-20

Improved method of particle swarm impedance inversion and its application

  • CHE Hongchang ,
  • REN Yaoyu ,
  • LIU Hanping ,
  • LIU Zhao
Expand
  • College of Geophysics, Chengdu University of Technology, Chengdu 610059, China

Online published: 2011-02-20

摘要

针对常规粒子群优化算法在波阻抗反演中普遍出现的收敛速度慢、反演效率不高等缺点,提出了层状模型约束下的粒子群波阻抗反演方法。该方法通过迭代反演每层的样点数和对应的波阻抗值,并利用对模型层数的扫描实现波阻抗反演。模型试算结果表明,与常规粒子群算法比较,该方法收敛速度和反演精度均显著提高。实际资料的反演证明了该方法的有效性。

本文引用格式

车洪昌 , 任耀宇 , 刘汉平 , 刘钊 . 改进的粒子群波阻抗反演方法与应用[J]. 岩性油气藏, 2011 , 23(1) : 103 -106 . DOI: 10.3969/j.issn.1673-8926.2011.01.018

Abstract

A new method of particle swarm optimization(PSO) impedance inversion is proposed because of the short comings of conventional PSO algorithm which has slow convergence rate and low inversion efficiency. The algorithm uses PSO algorithm to calculating the sample number and impedance for each layer of the model, and then uses the scanning method to obtain the optimal number of the layer. Compared with conventional PSO algorithm, the examples of synthetic data showthat the method significantly improves the inversion accuracy and convergence rate, and the actual data also proves the validity of this method.

参考文献

[1] 王西文,石兰亭,雍学善,等.地震波阻抗反演方法研究[J].岩性油气藏,2007,19(3):80-88.
[2] 文钢锋,王智,韩军,等.地质模型反演预测隐蔽油气藏[J].岩性油气藏,2009,21(1):94-98.
[3] 刘全新,高建虎,董雪华.储层预测中的非线性反演方法[J].岩性油气藏,2007,19(1):81-85.
[4] 刘全新,方光建.利用模拟退火算法实现地震叠前反演[J].岩性油气藏,2010,22(1):87-92.
[5] 王辉,张玉芬.基于模型的叠前数据多参数非线性反演[J].岩性油气藏,2008,20(2):108-113.
[6] Kennedy J,Eberhart R. Particle swarm optimization [C]∥IEEE International Conference on Neural Networks. Proceedings of IEEE International Conference,1995:1 942-1 948.
[7] Eberhart R,Kennedy J. A new optimizer using particle swarm theory [C]∥Micro Machine and Human Science. Proceedings of the Sixth International Symposium,1995:39-43.
[8] 徐刚,瞿金平,杨智韬.一种改进的自适应粒子群优化算法[J].华南理工大学学报,2008,36(9):6-10.
[9] 江宝钏,胡俊溟.求解多峰函数的改进粒子群算法的研究[J].宁波大学学报,2008,21(2):150-154.
[10] 赵全友,潘保昌,郑胜林.基于群评价的带变异粒子群算法[J].计算机工程与应用,2009,45(12):57-59.
[11] 易远元,袁三一,黄凯,等.地震波阻抗反演的粒子群算法实现[J].石油天然气学报,2007,29(3):79-81.
文章导航

/