技术方法

基于改进神经网络的渗透率预测方法

  • 袁剑英 ,
  • 付锁堂 ,
  • 曹正林 ,
  • 阎存凤 ,
  • 张水昌 ,
  • 马达德
展开
  • 1.中国石化西南油气分公司勘探开发研究院; 2.西南石油大学“油气藏地质及开发工程”国家重点实验室; 3.中国石油川庆钻探地质勘探开发研究院; 4.中国石化中原油田采油工程技术研究院天然气技术研究所
杨建,1983 年生,男,助理工程师,从事油气藏工程、数值模拟等相关研究。地址:( 610081)四川省成都市一环路北四段116 号。E-mail:yangjianchn@126.com

网络出版日期: 2011-02-20

基金资助

受国家油气重大专项“剩余油分布综合预测与层系井网重组技术”项目(编号:2008ZX05010-003)资助

Permeability prediction method based on improved BP neural network

  • YUAN Jianying ,
  • FU Suotang ,
  • CAO Zhenglin ,
  • YAN Cunfeng ,
  • ZHANG Shuichang ,
  • MA Dade
Expand
  • (1. Research Institute of Exploration and Development, Southwest Oil-Gas Field Company, Sinopec, Chengdu 610081, China; 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; 3. Research Institute of Geologic Exploration and Development, Chuanqing Drilling & Exploration Corporation, CNPC, Chengdu 610051, China; 4. Research Institute of Petroleum Engineering Technology, Zhongyuan Oilfield,
    Sinopec, Puyang 457001, China

Online published: 2011-02-20

摘要

由于传统BP 算法具有收敛速度慢、易陷入局部极小值等不足,文中对其进行了改进。在Kozeny- Carman 方程和杨正明研究的基础上,借助于MATLAB 神经网络工具箱,建立了预测岩石渗透率的3 层前馈型BP 神经网络模型。对改进的神经网络模型进行的仿真训练结果表明:改进模型具有更快的收敛速度和更高的精度,模型预测值与实验室测试值的一致性比较好,其相对误差小于10%,完全能够满足现场精度要求。

本文引用格式

袁剑英 , 付锁堂 , 曹正林 , 阎存凤 , 张水昌 , 马达德 . 基于改进神经网络的渗透率预测方法[J]. 岩性油气藏, 2011 , 23(1) : 98 -102 . DOI: 10.3969/j.issn.1673-8926.2011.01.017

Abstract

The traditional BP algorithmhas slowconvergence rate, and is easy to fall into local minimum. It is improved based on Kozeny-Carman equation and the study of Yang Zhengming, and a three-layer feedforward BP neural network model for permeability prediction is established bymeans ofMATLAB neural network toolbox. The simulation training of the improved neural network model is carried out. The result shows that the improved model has faster convergence rate and higher accuracy. The values predicted by the model are consistent with the laboratory test values, and the relative error is less than 10%, so it can completelymeet the accuracy demand ofwell site.

参考文献

[1] 吴新根,葛家理.应用人工神经网络预测油田产量[J].石油勘探与开发,1994,21(3):75-78.
[2] 刘全新,方光建.利用模拟退火算法实现地震叠前反演[J].岩性油气藏,2010,22(1):87-92.
[3] 周彩兰,刘敏.BP 神经网络在石油产量预测中的应用[J].武汉理工大学学报,2009,31(3):125-129.
[4] 邓勇,杜志敏,陆燕妮.遗传算法结合神经网络在油气产量预测中的应用[J].数学的认识与实践,2008,38(15):118-123.
[5] 飞思科技产品研发中心.MATLAB 6.5 辅助神经网络分析与设计[M].北京:电子工业出版社,2003:65-72.
[6] 党建武.神经网络技术及应用[M].北京:北京铁道出版社,2000:103-112.
[7] 刘全新,高建虎,董雪华.储层预测中的非线性反演方法[J].岩性油气藏,2007,19(1):81-85.
[8] 张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993:32-36.
[9] 杨华民,王文成.一种BP 改进算法[J].微型计算机,1997,17(2):53-54.
[10] 王静伟.BP 神经网络改进算法研究[J].中国水运,2008,18(1):157-158.
[11] 何更生.油层物理[M].北京:石油工业出版社,1994:5-8.
[12] 杨正明,姜汉桥,周荣学.用核磁共振技术测量低渗含水气藏中的束缚水饱和度[J].石油钻采工艺,2008,30(3):59-60.
[13] 孙勤华,刘晓梅,刘建新,等.利用波形分析技术半定量预测塔中碳酸盐岩储层[J].岩性油气藏,2010,22(1):101-103.
[14] 杨理践,刘金凤,高松巍.BP 神经网络在原油三相计量中的应用[J].油气田地面工程,2008,27(12):18-19.
[15] 汤文生,合烨,陈小安.基于BP 神经网络和遗传算法的硫化工艺参数优化[J].橡胶工业,2008,55(2):105-106.
[16] 陈永波,雍学善,刘化清.沉积体系域控制下的岩性油气藏预测方法研究及应用———以鄂尔多斯盆地北部中生界延长组岩性油气藏为例[J].岩性油气藏,2007,19(2):62-66.
[17] Goda H M,Maier H R,Behrenbruch P. The development of an optimal artificial neural network model for estimating initial water saturation-Australian reservoir[R]. SPE 93307,2005:312-314.
[18] 楼顺天,施阳.基于 MATLAB 的系统分析与设计———神经网络[M].西安:西安电子科技大学出版社,1999:10-14.
文章导航

/