油气田开发

低渗产水气藏携液模型研究与应用

  • 周瀛 ,
  • 唐海 ,
  • 吕栋梁 ,
  • 赵春明 ,
  • 廖兴武
展开
  • 中国石化华北分公司工程技术研究院,河南郑州450006
周瑞立(1982-),男,硕士,工程师,主要从事采油与采气工艺研究。 地址:(450006)河南省郑州市中原区陇海西路 199 号。 E-mail:zhouruili1982@163.com

网络出版日期: 2013-10-08

基金资助

国家重大科技专项“东胜气田钻采工程工艺体系优化研究”(编号:QTKF一2012—15)资助

Research and application of liquid—carrying model for low permeability and water production gas reservoir

  • ZHOU Ying ,
  • TANGHai ,
  • LU Dongliang ,
  • ZHAOChunming ,
  • LIAOXingwu
Expand
  • Research Institute of Engineering Technology,Sinopec North China Company,Zhengzhou 450006,China

Online published: 2013-10-08

摘要

准确预测气井临界携液气流量,对优化气井工作制度、排除井筒积液具有重要意义。 现有液滴模型未考虑液滴变形和液滴大小的影响,将临界韦伯数取为定值或认为临界携液气流量与临界韦伯数无关,导致模型的关系式系数为定值,存在一定理论不足。 综合考虑液滴变形和液滴大小特征,由液滴质点力平衡理论和能量守恒原理导出了气井临界携液气流量计算新模型。 新模型的关系式系数随压力增大而变大,为 1.92~5.30,弥补了现有液滴模型的关系式系数为定值的缺陷。 现场应用表明:新模型预测大牛地气田气井积液状态与实际较吻合,可满足生产要求。

本文引用格式

周瀛 , 唐海 , 吕栋梁 , 赵春明 , 廖兴武 . 低渗产水气藏携液模型研究与应用[J]. 岩性油气藏, 2013 , 25(4) : 123 -128 . DOI: 10.3969/j.issn.1673-8926.2013.04.024

Abstract

Accurate prediction of the critical liquid-carrying gas flow is very important to optimize work systems and exclude wellbore effusion for gas well. The currently used liquid-carrying models generally fail to comprehensively consider the influence of liquid droplet deformation and size for the critical liquid-carrying gas flow, and critical Weber number is taken as a given value or critical liquid-carrying gas flow has nothing to do with the Weber number, which is certainly lack of theory. Considering the droplet size and droplet deformation characteristics, and combined with the critical Weber number algorithm of Tatterson and Azzopdiar, based on the liquid droplet partial force equilibrium theory and energy conservation principle, we deduced a new model to predict the critical liquid-carrying gas flow. The new model coefficient varies from 1.92 to 5.3, which becomes larger with the pressure gradually, and it is to make up a defect on a given value of the coefficients of the currently used liquid-carrying models. Field application shows that the predicted effusion status of the vertical wells by this new model is agreed with actual effusion status, which can meet the production requirements.

参考文献

[1] 白涛.鄂尔多斯盆地大牛地气田储层评价与产能主控因数分析[D].成都:成都理工大学,2008.
[2] 郑军,闫长辉,张文洪,等.大牛地气田气井最小携液产量研究[J].油气地质与采收率,2011,18(1):70-73.
[3] Turner R G,Hubbard M G,Dukler A E. Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J]. Journal of Petroleum Technology,1969,21(11):1475-1482.
[4] Coleman S B,Clay H B, McCurdy, et al. A new look at predicting gas-well load-up[R]. SPE 20280,1991:329-333.
[5] Li Min,Sun Lei,Li Shilun. New view on continuous-removal liquids from gas wells[R]. SPE 70016,2001:42-46.
[6] 王毅忠,刘庆文.计算气井最小携液临界流量的新方法[J].大庆石油地质与开发,2007,26(6):82-85.
[7] 魏纳,李颖川,李锐钦,等.气井积液可视化实验[J].钻采工艺,2007,30(3):43-45.
[8] 雷登生,杜志敏,单高军,等.气藏水平井携液临界流量计算[J].石油学报,2010,31(4):637-639.
[9] Tatterson D F,Dallman J C,Hanratty T J. Drop sizes in annular gasliquid flows[J]. AIChE Journal,1977,23(1):68-76.
[10] Azzopardi B J,Pierarcey A,Jepson D M. Drop size measurements for annular two-phase flow in a 20 mm diameter vertical tube [J].Experiments in Fluids,1991,11(2/3):191-197.
[11] Hinze J O. Critical speeds and sizes of liquid globules[J]. Applied Scientific Research,1949,1(1):273-288.
[12] Liu Z,Reitz R D. An analysis of the distortion and breakup mechanisms of high speed liquid drops [J]. International Journal of Multiphase Flow,1997,23(4):631-650.
[13] Helenbrook B T,Edwards C F. Quasi-steady deformation and drag of uncontaminated liquid drops[J]. International Journal of Multiphase Flow,2002,28(10):1631-1657.
文章导航

/