学科前缘

各种速度分析与反演方法的对比研究

  • 许晓宏 ,
  • 潘 威 ,
  • 郭增强 ,
  • 戴立飞
展开
  • 同济大学海洋与地球科学学院波现象与反演成像研究组,上海200092
王华忠(1964-),男,教授,博士生导师,主要从事地震波传播、偏移成像与反演、近地表与中深层速度分析(反演)和速度模型建立、地震数据规则化处理等方面的研究工作。地址:(200092)上海市四平路1239 号同济大学海洋楼405 室。E-mail:herbhuak@vip.163.com

网络出版日期: 2012-10-20

基金资助

国家科技重大专项“山前带地震高精度成像技术研究”(编号:2011ZX05005-005-008HZ)和国家重点基础研究发展规划“973”项 目“基于散射点道集的全波形速度反演与成像”(编号:2011CB202402)联合资助。

Comparison among velocity analysis and inversion methods

  • XU Xiaohong ,
  • PAN Wei ,
  • GUO Zengqiang ,
  • DAI Lifei
Expand
  • School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

Online published: 2012-10-20

摘要

速度估计与建模是勘探地震学的核心技术。速度估计问题是一个标准的反演问题。原则上,反演问 题应该在贝叶斯框架下进行,但是石油工业界根据生产实际形成了一套速度分析与建模的技术系列。针 对目前速度估计与速度建模技术研究及应用现状,试图把各种速度估计方法都纳入贝叶斯估计框架下进 行审视。该框架的基本逻辑是建立2 种目标泛函:成像空间中的相关最佳泛函(或聚焦最佳泛函)和数据 空间中的逼近误差的方差最小泛函。在此目标泛函的基础上,利用梯度导引类的优化算法或Monte Carlo 类的全局寻优算法,甚至扫描(枚举)算法实现各种尺度下的速度估计及模型建立。在上述理论框架下,系 统地分析目前典型方法技术的共同特征,可以指出新的速度估计方法的发展方向。

本文引用格式

许晓宏 , 潘 威 , 郭增强 , 戴立飞 . 各种速度分析与反演方法的对比研究[J]. 岩性油气藏, 2012 , 24(5) : 1 -11 . DOI: 10.3969/j.issn.1673-8926.2012.05.001

Abstract

Velocity es timation and modeling technique is a key issue in exploration seismic. As a typical inversion problem, velocity estimation should be carried out under the framework of Bayesian estimation. However, a series of techniques for velocity analysis and modeling are developed by the petroleumindustry. In viewof the present situation of research and application of velocity estimation and modeling technique, we try to analyze the current velocity estimation methods under the framework of Bayesian estimation. All the existing velocity estimation methods can be incorporated into the following two objective functions: the best correlation criterion (the best focusing criterion) in the image-domain or the least error criterion in the data-domain. The gradient-guided local optimization method and Monte Claro method can be used to estimate the seismic velocity in different scales. Under this framework, we can analyze the common features of all the currentmethods, and develop new methods and techniques for velocity estimation.

参考文献

[1] Deregowski S M. Common-offset migrations and velocity analysis[J]. First Break,1990,8(6):225-234.
[2] Doherty S M,Claerbout J F. Structure independent velocity estimation[J]. Geophysics,1976:41(5):850-881.
[3] Faye J P,Jeannot J P. Prestack migration velocities from depthfocusing analysis[J]. SEG Expanded Abstracts,1986,5:438-440.
[4] Al-Yahya K. Velocity analysis by iterative profile migration [J].Geophysics,1989,54(6):718-729.
[5] Chapman C H. The Radon transform and seismic tomography[M]∥Nolet G. Seismic tomography. Dordrecht:D. Reidel Publishing Company,1987:25-47.
[6] Sirgue L,Barkved O I,Gestel J P,et al. 3D waveform inversion on Valhall wide-azim-uth OBC[C]. EAGE Conference and Exhibition,U038,2009.
[7] Plessix R,Baeten G,Willem J,et al. Full waveform inversion and distance separated simultaneous sweeping:A study with a land seismic data set [J]. Geophysical Prospecting,2012,60 (4):1 -15.
[8] 刘守伟,王华忠,程玖兵,等.时空移动成像条件及偏移速度分析[J].地球物理学报,2008,51(6):1883-1891.
[9] 张凯. 叠前偏移速度分析方法研究[D].上海:同济大学,2008.
[10] Symes W W,Carazzone J J. Velocity inversion by differential semblance optimization[J]. Geophysics,1991,56(5):654-663.
[11] Shen P,Symes W W,Stolk C C. Differential semblance velocity analysis by wave-equation migration[J]. SEG Expanded Abstracts,2003,22:2135-2139.
[12] Shen P,Symes W W,Morton S,et al. Differential semblance velocity analysis via shot profile migration [J]. SEG Expanded Abstracts,2005,24:2249-2252.
[13] Berkhout A J. Pushing the limits of seismic imaging,partⅠ:Prestack migration in terms of double dynamic focusing[J]. Geophysics,1997,62(3):937-953.
[14] Kabir M M N,Verschuur D J. Migration velocity analysis using the common focus point technology[J]. SEG Expanded Abstract,1996,15:407-410.
[15] Kabir M M N,Verschuur D J. A constrained parametric inversion for velocity analysis based on CFP technology[J]. Geophysics,2000,65(4):1210-1222.
[16] 辛可锋,王华忠,马在田,等.共聚焦点层析速度建模方法[J].石油物探,2005,44(4):329-333.
[17] Biondi B, Sava P. Wave-equation migration velocity analysis[J].SEG Technical Program Expanded Abstracts,1999,18:1723 -1726.
[18] Tarantola A. Inversion of travel times and seismic waveforms[M]∥Nolet G. Seismic tomography. Dordrecht, Holland:D. Reidel Publishing Company,1987:135-157.
[19] 张兵. 基于深度域共成像点道集的层析速度反演与建模方法研究[D].上海:同济大学,2011.
[20] Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics,1984,49(8):1259-1266.
[21] Tarantola A. A strategy for nonlinear elastic inversion of seismic reflection data[J]. Geophysics,1986,51(10):1893-1903.
[22] Pratt R G. Inverse theory applied to multi-source cross-hole tomo-graphy,Part Ⅱ:Elastic wave-equation method[J]. GeophysicalProspecting,1990,38(3):311-330.
[23] Pratt R G,Worthington M H. Inverse theory applied to multisource cross-hole tomography,Part Ⅰ:Acoustic wave-equation method[J].Geophysical Prospecting,1990,38(3):287-310.
[24] Pratt R G, Shin C, Hicks G J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J]. Geophysical Journal International,1998,133(2):341-362.
[25] Pratt R G. Seismic waveform inversion in the frequency domain,Part Ⅰ:Theory and verification in a physical scale model[J]. Geophysics,1999,64(3):888-901.
[26] Pratt R G,Shipp R M. Seismic waveform inversion in the frequency domain,Part Ⅱ:Fault delineation in sediments using crosshole data [J]. Geophysics,1999,64(3):902-914.
[27] Shin C,Cha Y H. Waveform inversion in the Laplace domain[J].Geophysical Journal International,2008,173(3):922-931.
[28] Shin C, ChaYH.Waveforminversion in the Laplace-Fourier domain[J]. Geophysical Journal International,2009,177(3):1067-1079.
[29] Shin C,Min D J. Waveform inversion using a logarithmic wavefield [J]. Geophysics,2006,71(3):R31-R42.
[30] Bunks C,Saleck F M,Zaleski S,et al. Multiscale seismic waveform inversion[J]. Geophysics,1995,60(5):1457-1473.
文章导航

/