技术方法

注CO2井筒温度和压力分布模型研究及现场应用

  • 张琴 ,
  • 朱筱敏 ,
  • 刘畅 ,
  • 季汉成 ,
  • 陈祥
展开
  • 中国石化华北分公司 工程技术研究院,郑州 450006
张永刚(1986-),男,硕士,主要从事油气田开发方面的研究工作。 地址:(450006)河南省郑州市中原区陇海西路 199 号。 E-mail:zhangyg3600@126.com。

网络出版日期: 2014-04-06

基金资助

中国石化科技部项目“改善鄂南致密油藏水平井开发效果工艺研究”(编号:P13090)资助

Research and application of wellbore temperature and pressure distribution models for CO2 injection well

  • ZHANG Qin ,
  • ZHU Xiaomin ,
  • LIU Chang ,
  • JI Hancheng ,
  • CHEN Xiang
Expand
  • Research Institute of Engineering and Technology, Sinopec North Branch, Zhengzhou 450006, China

Online published: 2014-04-06

摘要

为了解释红河油田注 CO2现场试验中出现的气窜问题,准确优化现场试验中 CO2注入压力,利用传 热学理论,通过分析井筒传热过程,建立起注 CO2井筒温度和压力分布的耦合模型,并结合实际注入参 数,对红河油田注 CO2井筒温度和压力分布进行了研究,此外也解释了现场试验中出现的气窜问题。 结 果表明,在注入井实际注入参数下,井筒温度随着井筒深度的增加而增大,但始终低于地层原始温度;井 筒压力随着井筒深度的增加呈近似线性增加;井口注入压力过大致使井底压力大于地层破裂压力,这是 导致发生气窜现象的根本原因。 模型理论计算结果与现场分析结果相吻合,表明该模型对于实际生产具 有一定的指导意义。

本文引用格式

张琴 , 朱筱敏 , 刘畅 , 季汉成 , 陈祥 . 注CO2井筒温度和压力分布模型研究及现场应用[J]. 岩性油气藏, 2014 , 26(2) : 108 -113 . DOI: 10.3969/j.issn.1673-8926.2014.02.017

Abstract

In order to explain the gas breakthrough phenomenon in CO2 flooding field test and accurately optimize the injection pressure, a mathematical model to describe the temperature and pressure distribution was established based on the analysis of wellbore heat transmission and the theory of heat transfer. The temperature and pressure distribution for CO2 injection well in Honghe Oilfield was studied, meanwhile the gas breakthrough phenomenon in CO2 flooding field test was explained by the model combined with the actual injection parameter. The results show that the wellbore temperature increases with the increasing of well depth, while keeps lower than the formation temperature, and the wellbore pressure increases linearly approximately with the increasing of well depth. The greater injection pressure leads to that the bottomhole pressure exceeds formation fracture pressure, which is the root cause of gas breakthrough. The theoretical calculation agreed well with the field analysis, which shows that the model had an excellent guiding significance to the field test.

参考文献

[1] 李虎,蒲春生,吴飞鹏.基于广义回归神经网络的CO2驱最小混相压力预测[J].岩性油气藏,2012,24(1):108-111.
[2] 夏为卫,王新海,雷娟青.低渗透油藏注二氧化碳气体的井网优选研究———以松辽盆地南部 H 油田 L 油藏为例[J].岩性油气藏,2009,21(4):105-107.
[3] 张弦,刘永建,车洪昌,等.伴注非凝气体和化学剂提高汽驱采收率实验研究[J].岩性油气藏,2010,22(2):116-119.
[4] 刘洪波,程林松,宋立新,等.注超临界气体井筒温度压力场计算方法[J].石油大学学报:自然科学版,2004,28(1):52-54.
[5] 钟海全,刘通,李颖川,等.考虑地层非稳态传热的井筒流体温度预测简化模型[J].岩性油气藏,2012,24(4):108-110.
[6] 吴晓东,王庆,何岩峰.考虑相态变化的注CO2井井筒温度压力场耦合计算模型[J].中国石油大学学报:自然科学版,2009,33(1):73-77.
[7] 张勇,唐人选.CO2井筒压力温度的分布[J].海洋石油,2007,27(2):59-64.
[8] 陈林.注CO2井筒及油层温度场分布规律模拟研究[D].成都:西南石油大学,2008.
[9] Ramey H J. Wellbore heat transmission[J]. Journal of Petroleum Technology,1962,14(4):427-435.
[10] Span R,Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data,1996,25(6):1509-1596.
[11] Fenghour A,Wakeham W A. The viscosity of carbon dioxide[J].Journal of Physical and Chemical Reference Data,1998,27 (1):31-44.
[12] Vesovic V,Wakeham W A,Olchowy G A,et al. The transport properties of carbon dioxide [J]. Journal of Physical and Chemical Reference Data,1990,19(3):763-808.
[13] 中国市政工程西南设计院.给水排水设计手册(第1 册)[M].第2 版.北京:中国建筑工业出版社,2000:106-108.
[14] Hasan A R,Kabir C S. Aspects of wellbore heat transfer during two phase flow[J]. SPE Production & Facilities,1994,9(3):211-216.
[15] 沈复,李阳初.石油加工单元过程原理(上册)[M].北京:中国石化出版社,1996:251.
[16] Dropkin D,Somerscales E. Heat transfer by natural convection in liquids confined by two parallel plates which are inclined at various angles with respect to tie horizontal[J]. Journal of Heat Transfer,1965,87(1):77-82.
[17] Chen N H. An explicit equation for friction factor in pipe [J].Industrial and Engineering Chemistry Fundamentals,1979,18(3):296-297.
文章导航

/