Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (4): 149-160.doi: 10.12108/yxyqc.20180418

Previous Articles    

Influences of bedding planes on mechanical properties and prediction method of brittleness index in shale

WANG Yuepeng, LIU Xiangjun, LIANG Lixi   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • Received:2017-09-13 Revised:2018-01-14 Online:2018-07-21 Published:2018-07-21

Abstract: In order to study the mechanism of the effects of bedding planes on the mechanical properties of shale, we carried out the following related experimental researches. After observing the shale samples taken from Long-maxi Formation in Jiaoshiba area in Sichuan Basin by polarizing microscope and scanning electron microscopy, we got that the shales are rich in bedding planes, micro-fractures and micro-pores. The clay minerals are arranged in a directional arrangement, and the cementations of the layers are weak. RFPA numerical simulation basic parameters were acquired by the results of uniaxial physical compression experiments at different bedding plane angles. These are the basis on which the influence of bedding plane angles, the densities of bedding panes and the mechanical properties of bedding planes on uniaxial compressive strength, elastic modulus, Poisson's ratio and brittleness can continue to be studied by using digital simulation method. A new prediction method for shale brittleness index was presented by statistical methods when we only know the densities of bedding planes, the angles of bedding planes, uniaxial compressive strength and the mechanical properties of bedding planes. Numerical simulation experiments results indicated that the characteristics of uniaxial compressive strength and brittleness index at different angles of bedding plane roughly showed the U-shaped changing trend. The maximum value occurred at the bedding plane angles of 0° and 90°, whereas the minimum value occurred at the bedding plane angle of 45°. The elastic modulus of shale decreased with the increase of bedding angles, then increased and then decreased, finally increased. With the increase of bedding plane angles, the value of Poisson's ratio firstly decreased, then increased and finally decreased. And Poisson's ratio got the minimum value at bedding plane angle of 30°, whereas the maximum value at bedding plane angle of 70°. Elastic modulus, uniaxial compressive strength, and brittleness index overall decreased with the increase of the density of bedding planes. Poisson's ratio showed different states at the different bedding plane angles with the increase of the density of bedding planes. The types of rock fracture of uniaxial physical compression experiments are different at different bedding plane angles. The strength parameters, elastic parameters, brittleness and fracture modes all showed very strong anisotropy. The study about the influence of bedding planes on the mechanical properties and the prediction of brittleness in shale can provide a necessary technical foundation for the stability of shale gas wells and rational development of shale gas.

CLC Number: 

  • P313.1
[1] 肖钢, 唐颖. 页岩气及其勘探开发. 北京:高等教育出版社, 2012:10-25. XIAO G, TANG Y. Shale gas and its exploration and development. Beijing:Higher Education Press, 2012:10-25.
[2] 张金川, 徐波, 聂海宽, 等.中国页岩气资源勘探潜力.天然气工业, 2008, 28(6):136-140. ZHANG J C, XU B, NIE H K, et al. Exploration potential of shale gas resources in China. Natural Gas Industry, 2008, 28(6):136-140.
[3] JOSH M, ESTEBAN L, PLANE C D, et al. Laboratory characterization of shale properties. Journal of Petroleum Science & Engineering, 2012, 88-89(2):107-124.
[4] DEWHURST D N, HENNING A L. Geomechanical properties related to top seal leakage in the Carnarvon Basin,Northwest Shelf, Australia. Petroleum Geoscience, 2003, 9(3):255-263.
[5] CIZ R, SHAPIRO S A. Stress-dependent anisotropy in transversely isotropic rocks:Comparison between theory and laboratory experiment on shale. Geophysics, 2009, 74(1):7-12.
[6] ONG S H. Borehole stability. Norman:University of Oklahoma, 1994:10-15.
[7] 徐勇, 吕成福, 陈国俊, 等.川东南龙马溪组页岩孔隙分形特征.岩性油气藏, 2015, 27(4):32-39. XU Y, LYU C F, CHEN G J, et al. Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin. Lithologic Reservoirs, 2015, 27(4):32-39.
[8] 龚小平, 唐洪明, 赵峰, 等.四川盆地龙马溪组页岩储层孔隙结构的定量表征.岩性油气藏, 2016, 28(3):48-57. GONG X P, TANG H M, ZHAO F, et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin. Lithologic Reservoirs, 2016, 28(3):48-57.
[9] 陈乔, 刘洪, 王森, 等.重庆地区下志留统龙马溪组页岩基础物性实验研究.科学技术与工程, 2013, 13(15):4148-4152. CHEN Q, LIU H, WANG S, et al.Experimental study of the fundamental physical properties on shale in Longmaxi Formation of Lower Silurian, Chongqing. Science Technology and Engineering, 2013, 13(15):4148-4152.
[10] 陈勉, 金衍, 张广清.石油工程岩石力学.北京:科学出版社, 2008:114-115. CHEN M, JINY, ZHANG G Q. Petroleum engineering rock mechanics. Beijing:Science Press, 2008:114-115.
[11] CHENEVERT M E, GATLIN C. Mechanical anisotropies of laminated sedimentary rocks. Society of Petroleum Engineers Journal, 1965, 5(1):67-77.
[12] MCLAMORE R T, GRAY K E. A strength criterion for anisotropic rocks based upon experimental observations. The 96 th Annual AIME Meeting, Society of Petroleum Engineers, Los Angeles, California, 1967.
[13] SINGH M, SAMADHIYA N K, KUMAR A, et al. A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mechanics & Rock Engineering, 2015, 48(4):1387-1405.
[14] SHI X, YANG X, MENG Y, et al. An anisotropic strength model for layered rocks considering planes of weakness. Rock Mechanics & Rock Engineering, 2016, 49(9):1-10.
[15] 刘运思, 傅鹤林, 伍毅敏, 等.横观各向同性岩石弹性参数及抗压强度的试验研究.中南大学学报(自然科学版), 2013, 44(8):3398-3404. LIU Y S, FU H L, WU Y M, et al. Experimental study of elastic parameters and compressive strength for transversely isotropic rocks. Journal of Central South University(Science and Technology), 2013, 44(8):3398-3404.
[16] 侯振坤, 杨春和, 郭印同, 等.单轴压缩下龙马溪组页岩各向异性特征研究.岩土力学, 2015, 36(9):2541-2550. HOU Z K, YANG C H, GUO Y T, et al. Experimental study on anisotropic properties of Longmaxi Formation shale under uniaxial compression. Rock and Soil Mechanics, 2015, 36(9):2541-2550.
[17] 衡帅, 杨春和, 张保平, 等.页岩各向异性特征的试验研究.岩土力学, 2015, 36(3):609-616. HENG S, YANG C H, ZHANG B P, et al. Shale anisotropic characteristics of the experimental study. Rock and Soil Mechanics, 2015, 36(3):609-616.
[18] 姚光华, 陈乔, 刘洪, 等.渝东南下志留统龙马溪组层理性页岩力学特性试验研究.岩石力学与工程学报, 2015, 34(增刊1):3313-3319. YAO G H, CHEN Q, LIU H, et al. Experiment study on mechanical properties of bedding shale in Lower Silurain Longmaxi shale southeast Chongqing. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 1):3313-3319.
[19] 梁正召, 唐春安, 李厚祥, 等.单轴压缩下横观各向同性岩石破裂过程的数值模拟.岩土力学, 2005, 26(1):57-62. LIANG Z Z, TANG C A, LI H X, et al. A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression. Rock and Soil Mechanics, 2005, 26(1):57-62.
[20] 刘江涛, 刘双莲, 李永杰, 等.焦石坝地区奥陶系五峰组-志留系龙马溪组页岩地球化学特征及地质意义. 油气地质与采收率, 2016, 23(3):53-57. LIU J T, LIU S L, LI Y J, et al. Geochemistry characteristics and its geological significance of shale in the Ordovician Wufeng Formation and Silurian Longmaxi Formation, Jiaoshibaarea. Petroleum Geology and Recovery Efficiency, 2016, 23(3):53-57.
[21] 罗健, 戴鸿鸣, 邵隆坎, 等.四川盆地下古生界页岩气资源前景预测.岩性油气藏, 2012, 24(4):70-74. LUO J, DAI H M, SHAO L K, et al. Prospect prediction for shale gas resources of the Lower Paleozoic in Sichuan Basin. Lithologic Reservoirs, 2012, 24(4):70-74.
[22] 李可, 王兴志, 张馨艺, 等.四川盆地东部下志留统龙马溪组页岩储层特征及影响因素.岩性油气藏, 2016, 28(5):52-58. LI K, WANG X Z, ZHANG X Y, et al. Shale reservoir characteristics and influencing factors of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin. Lithologic Reservoirs, 2016, 28(5):52-58.
[23] 唐春安, 王述红, 傅宇方.岩石破裂过程数值试验.北京:科学出版社, 2005:49-65. TANG C A, WANG S H, FU Y F. Numerical experiments of rock failure process. Beijing:Science Press, 2005:49-65.
[24] 梁正召, 唐春安, 李连崇, 等.细观介质拉压比对岩石破坏过程的影响.岩石力学与工程学报, 2004, 23(1):7-11. LIANG Z Z, TANG C A, LI L C, et al. Influence of ratio of mesoscopic compressive strength to mesoscopic tensile strength on progressive failure of rock. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1):7-11.
[25] 夏英杰, 李连崇, 唐春安, 等.基于峰后应力跌落速率及能量比的岩体脆性特征评价方法.岩石力学与工程学报, 2016, 35(6):1141-1154. XIA Y J, LI L C, TANG C A, et al. Rock brittleness evaluation based on stress dropping rate after peak stress and energy ratio. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6):1141-1154.
[26] JAEGER J C. Shear failure of anisotropic rocks. Geological Magazine, 1960, 97(1):65-72.
[27] 李庆辉, 陈勉, 金衍, 等.页岩脆性的室内评价方法及改进.岩石力学与工程学报, 2012, 31(8):1680-1685. LI Q H, CHEN M, JIN Y, et al. Indoor evaluation method for shale brittleness and improvement. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1680-1685.
[28] RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett Shale. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2008.
[29] 刘致水, 孙赞东.新型脆性因子及其在泥页岩储集层预测中的应用.石油勘探与开发, 2015, 42(1):117-124. LIU Z S, SUN Z D. New brittleness indexes and their application in shale/clay gas reservoir prediction. Petroleum Exploration and Development, 2015, 42(1):117-124.
[30] 王俊瑞, 梁力文, 邓强, 等.基于多元回归模型重构测井曲线的方法研究及应用.岩性油气藏, 2016, 28(3):113-120. WANG J R, LIANG L W, DENG Q, et al. Research and application of log reconstruction based on multiple regression model. Lithologic Reservoirs, 2016, 28(3):113-120.
[31] 朱俊访, 李博, 聂阳.多元非线性回归与BP神经网络在香菇多糖提取工艺研究中的应用.海峡药学, 2014, 26(2):15-17. ZHU J F, LI B, NIE Y. Application of multi-nonlinear regress analysis and back-propagation neural network in the research of extracting lentinan. Strait Pharmaceutical Journal, 2014, 26(2):15-17.
[32] 田生昌. Excel软件在非线性回归分析中的应用探讨. 宁夏农林科技, 2011, 52(11):29-31. TIAN S C. Excel software used for multi-nonlinear regress analysis and discussion. Ningxia Journal of Agriculture and Forestry Science and Technology, 2011, 52(11):29-31.
[33] 王中华, 山桂云, 林英武. Excel多元线性回归及在化学中的应用.计算机与应用化学, 2005, 22(9):121-124. WANG Z H, SHAN G Y, LIN Y W. Multi-linear regression analysis using Microsoft excel and it's application in chemistry. Computers and Applied Chemistry, 2005, 22(9):121-124.
[34] 周晨, 冯宇东, 肖匡心, 等.基于多元线性回归模型的东北地区需水量分析.数学的实践与认识, 2014, 44(1):118-123. ZHOU C, FENG Y D, XIAO K X, et al. Research on water requirement in northeast area based on multiple linear regression model. Mathematics in Practice and Theory, 2014, 44(1):118-123.
[35] 靳庭良, 张宝青.回归分析中t检验与F检验关系的进一步探讨.统计与决策, 2009(21):7-9. JIN T L, ZHANG B Q. Further discussion on the relationship between t-test and F test in regression analysis. Statistics & Decision, 2009(21):7-9.
[36] 刘明, 王仁曾. 基于t检验的逐步回归的改进. 统计与决策, 2012(6):16-19. LIU M, WANG R Z. Stepwise regression improvement based on t test. Statistics & Decision, 2012(6):16-19.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: