Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (6): 85-96.doi: 10.12108/yxyqc.20200608

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Discussion on seismic identification characteristics and controlling factors of sediment bypass

SHANG Wenliang1,2, XU Shaohua1,2, CAI Molun3, GAO Hongcan1,2, LI Xiaogang1,2, CHEN Cen1,2, CAI Change1,2, QIN Lei1,2   

  1. 1. Chongqing Key Laboratory of Complex Oil & Gas Exploration and Development, Chongqing 401331, China;
    2. School of Petroleum Engineering, Chongqing University of Science & Technology, Chongqing 401331, China;
    3. Geological Exploration & Development Research Institute, CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China
  • Received:2020-04-08 Revised:2020-05-07 Online:2020-12-01 Published:2020-10-30

Abstract: At present,most of researches on sediment bypass are focused on explaining the non-deposition that occur in continental shelves or slopes,but the main controlling factors of sediment bypass are still not clear. By collecting domestic and foreign cases of sediment bypass and making comparative analysis on different cases, the identification signs of sediment bypass on seismic profiles and the main controlling factors of sediment bypass have been ascertained. The result shows:(1)Sediment bypass represents depositional break,and appears as the merging of seismic events of the top and bottom formation in seismic profile. (2)Sediment bypass mostly occurs on above-graded slope,and the filling stages of different accommodation spaces(ponded-basin accommodation space,healed-slope accommodation space and slope accommodation space)in above-graded slope provide potential areas for sediment bypass.(3)Sediment grain size,concentration,fluid flow,and slope determine whether the sediment can pass by. Among them,sediment grain size and fluid flow are the main factors that affect the turbidity currents bypass. Sediment concentration is the main factor that affects the debris flow. (4)The controlling effect of slope on sediment bypass is reflected in two aspects:absolute gradient difference and relative slope ratio of adjacent formation. Relative slope ratio is an important condition for the start of sediment bypass. The absolute slope difference determines the distance of sediment bypass. The smaller the absolute gradient difference is,the shorter the bypass distance is;the larger the absolute gradient difference is,the longer the bypass distance is. This research is helpful to deepen the understanding and knowledge about the sediment transport process,and also has reference for future research of sediment bypass.

Key words: sediment bypass, above-graded slope, accommodation space, relative slope ratio

CLC Number: 

  • P512.2
[1] SLOOS L L. Sequences in the cratonic interior of North America. Geological Society of America Bulletin, 1963, 74(2):93-114.
[2] WHEELER H E. Baselevel, lithosphere surface, and time-stratigraphy. Geological Society of America Bulletin, 1964, 75(7):599-610.
[3] CROSS T A. Stratigraphy controls on reservoir attributes in continental strata. Earth Science Frontiers, 2000, 7(4):322-350.
[4] 李江涛, 李增学, 郭建斌, 等.高分辨率层序地层分析中基准面变化的讨论.沉积学报, 2005, 23(2):297-302. LI J T, LI Z X, GUO J B, et al. Discussion about base-level changes in the analysis of high-resolution sequence stratigraphy. Acta Sedimentologica Sinica, 2005, 23(2):297-302.
[5] 吴因业, 朱如凯, 罗平, 等.沉积学与层序地层学研究新进展:第18届国际沉积学大会综述. 沉积学报, 2011, 29(1):199-206. YU Y Y, ZHU R K, LUO P, et al. Advance on sedimentology and sequence stratigraphy:a summary from 18th International Sedimentology Congress. Acta Sedimentologica Sinica, 2011, 29(1):199-206.
[6] 辛仁臣, 王英民, 冯志强, 等.松辽盆地中央坳陷区西部重力流沉积特征及其成因模式.地球学报, 2003, 24(增刊1):58-63. XIN R C, WANG Y M, FENG Z Q, et al. Sediments gravity flow sedimentary characteristics and its genetic models of the western part of center depression region, Songliao Basin. Acta Geoscientica Sinica, 2003, 24(Suppl 1):58-63.
[7] 樊太亮, 郭齐军, 吴贤顺.鄂尔多斯盆地北部上古生界层序地层特征与储层发育规律.现代地质, 1999, 13(1):32-36. FAN T L, GUO Q J, WU X S. Features of sequence stratigraphy and distribution regularities of reservoir in Upper Paleozoic of north Ordos Basin. Geoscience, 1999, 13(1):32-36.
[8] 康洪全, 孟金落, 程涛, 等.巴西坎波斯盆地深水沉积体系特征.石油勘探与开发, 2018, 45(1):93-104. KANG H Q, MENG J L, CHENG T, et al. Characteristics of deep water depositional system in Campos basin, Brazil. Petroleum Exploration and Development, 2018, 45(1):93-104.
[9] STEVENSON C J, JACKSON C A L, HODGSON D M, et al. Deep-water sediment bypass. Journal of Sedimentary Research, 2015, 85:1058-1081.
[10] MULDER T, ALEXANDER J. Abrupt change in slope causes variation in the deposit thickness of concentrated particle-driven density currents. Marine Geology, 2001, 175:221-235.
[11] CASALBORE D, FALCINI F, MARTORELLI E, et al. Characterization of overbanking features on the lower reach of the GioiaMesima canyon-channel system (southern Tyrrhenian Sea) through integration of morpho-stratigraphic data and physical modelling. Progress in Oceanography, 2018, 169:66-78.
[12] ROUSE H. Modern conceptions of the mechanics or fluid turbulence. Transactions of the American Society of Civil Engineers, 1937, 102(1):463-505.
[13] LEEDER M R, GRAY T E, ALEXANDER J. Sediment suspension dynamics and a new criterion for the maintenance of turbulent suspensions. Sedimentology, 2005, 52:683-691.
[14] PANTIN H M, FRANKLIN M C. Predicting autosuspension in steady turbidity flow:Ignition points and their relation to Richardson Numbers. Journal of Sedimentary Research, 2009, 79:862-871.
[15] PAKER G. Conditions for the ignition of catastrophically erosive turbidity currents. Marine Geology, 1982, 46(3/4):307-327.
[16] 王海荣, 王英明, 邱燕, 等.南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制. 沉积学报, 2008, 26(1):39-45. WANG H R, WANG Y M, QIU Y, et al. Development and its tectonic activity's origin of turbidity current sediment wave in Manila Trench,the South China Sea. Acta Sedimentologica Sinica, 2008, 26(1):39-45.
[17] 王星星.南海珠江口外峡谷深水沉积作用及响应.杭州:浙江大学, 2019. WANG X X. Deep-water sedimentary processes and responses in the pearl River Canyon, South China Sea. Hangzhou:Zhejiang University, 2019.
[18] 刘豪, 王英民, 王媛.浅海陆棚环境下沉积坡折带及其对局部强制海退体系域的控制.沉积学报, 2011, 29(5):906-916. LIU H, WANG Y M, WANG Y. Depositional slope break in shallow marine shelf setting and its control on regional forced regressive wedge systems tract. Acta Sedimentologica Sinica, 2011, 29(5):906-916.
[19] PAUMARD V, BOURGET J, PAYENBERG T, et al. Shelfmargin architecture and shoreline processes at the shelf-edge:Controls on sediment partitioning and prediction of deep-water deposition style. ASEG Extended Abstracts, 2018:1-6.
[20] 任梦怡, 江青春, 刘震, 等.南堡凹陷柳赞地区沙三段层序结构及其构造响应.岩性油气藏, 2020, 32(3):93-103. REN M Y, JIANG Q C, LIU Z, et al. Sequence architecture and structural response of the third member of Shahejie Formation in Liuzan area, Nanpu Sag. Lithologic Reservoirs, 2020, 32(3):93-103.
[21] 洪亮, 陈彬滔, 刘雄志, 等. Muglad盆地Kaikang槽西斜坡沉积演化及其油气地质意义.岩性油气藏, 2019, 31(2):8-15. HONG L, CHEN B T, LIU X Z, et al. Sedimentary evolution and its significances for petroleum exploration in the west slope of Kaikang trough, Muglad Basin, Sudan-South Sudan. Lithologic Reservoirs, 2019, 31(2):8-15.
[22] 王嗣敏, 刘招君.高分辨率层序地层学在陆相地层研究中若干问题的讨论.地层学杂志, 2004, 28(2):179-184. WANG S M, LIU Z J. Discussion on some problems of highresolution sequence stratigraphy in the study of continental stratigraphy. Journal of Stratigraphy, 2004, 28(2):179-184.
[23] 邓宏文.美国层序地层研究中的新学派:高分辨率层序地层学.石油与天然气地质, 1995, 16(2):89-97. DENG H W. A new school of thought in sequence stratigraphic studies in US:High-resolution sequence stratigraphy. Oil & Gas Geology, 1995, 16(2):89-97.
[24] 邓宏文.高分辨率层序地层学应用中的问题探析.古地理学报, 2009, 11(5):471-480. DENG H W. Discussion on problems of applying high resolution sequence stratigraphy. Journal of Palaeogeography, 2009, 11(5):471-480.
[25] 岳文浙, 丁保良, 魏乃颐.陆盆层序地层研究的思路.地质论评, 2000, 46(4):347-354. YUE W Z, DING B L, WEI N Y. Thoughts on the study of continental sequence stratigraphy. Geological Review, 2000, 46(4):347-354.
[26] 郑荣才, 尹世民, 彭军.基准面旋回结构与叠加样式的沉积动力学分析.沉积学报, 2000, 18(3):369-375. ZHENG R C, YIN S M,PENG J. Sedimentary dynamic analysis of sequence structure and stacking pattern of base-level cycle. Acta Sedimentologica Sinica, 2000, 18(3):369-375.
[27] 何玉平, 刘招君, 杜江峰.高分辨率层序地层学基准面旋回识别.世界地质, 2003, 22(1):21-25. HE Y P, LIU Z J, DU J F. Recognition of Base-level cycle in high-resolution sequence stratigraphy. Global Geology, 2003, 22(1):21-25
[28] 孙辉, 刘少治, 吕福亮, 等.东非鲁武马盆地渐新统富砂深水朵体复合体特征及影响因素. 地质学报, 2019, 93(5):1154-1165. SUN H, LIU S Z, LYU F L, et al. Sedimentary characteristics and influential factors of Oligocene deep water sand-rich lobe complex in the Rovuma Basin, East Africa. Acta Geologic Sinica, 2019, 93(5):1154-1165.
[29] 庞雄, 朱明, 柳保军, 等.南海北部珠江口盆地白云凹陷深水区重力流沉积机理.石油学报, 2014, 35(4):646-653. PANG X, ZHU M, LIU B J, et al. The mechanism of gravity flow deposition in Baiyun sag deepwater area of the northern South China Sea. Acta Petrolei Sinica, 2014, 35(4):646-653.
[30] 李林, 曲永强, 孟庆任, 等. 重力流沉积:理论研究与野外识别.沉积学报, 2011, 29(4):677-688. LI L, QU Y Q, MENG Q R, et al. Gravity flow sedimentation:Theoretical studies and field identification. Acta Sedimentologica Sinica, 2011, 29(4):677-688.
[31] MUTTI E, NORMARK W R. Comparing examples of modern and ancient turbidite systems:Problems and concepts. Marine Clastic Sedimentology, 1987:1-38.
[32] MAYALL M, JONES E, CASEY M. Turbidite channel reservoirs:Key elements in facies prediction and effective development. Marine and Petroleum Geology, 2006, 23:821-841.
[33] HUBBARD S M, COVAULT J A, FILDANI A, et al. Sediment transfer and deposition in slope channels:Deciphering the record of enigmatic deep-sea processes from outcrop. Geological Society of America Bulletin, 2014, 126(5-6):857-871.
[34] CALLOW R H T, KNELLER B, DYKSTRA M, et al. Physical, biological, geochemical and sedimentological controls on the ichnology of submarine canyon and slope channel systems. Marine and petroleum geology, 2014, 54:144-166.
[35] STEVENSON C J, TALLING P J, WYNN R B, et al. The flows that left no trace:Very large-volume turbidity currents that bypassed sediment through submarine channels without eroding the sea floor. Marine and Petroleum Geology, 2013, 41:186-205.
[36] GONG C L, STEEL R J, WANG Y M, et al. Shelf-edge delta overreach at the shelf break can guarantee the delivery of terrestrial sediments to deep water at all sea-level stands. AAPG Bulletin, 2019, 103(1):65-90.
[37] 刘汉尧, 林畅松, 张忠涛, 等.珠江口盆地白云凹陷北坡第四纪层序地层和沉积体系演化及其控制因素.海洋地质与第四纪地质, 2019, 39(1):25-37. LIU H Y, LIN C S, ZHANG Z T, et al. Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems. Marine Geology & Quaternary Geology, 2019, 39(1):25-37.
[38] 李磊, 王英民, 张莲美, 等.尼日尔三角洲下陆坡限定性重力流沉积过程及响应.中国科学:地球科学, 2010, 40(11):1591-1597. LI L, WANG Y M, ZHANG L M, et al. Confined gravity flow sedimentary process and its impact on the lower continental slope, Niger Delta. Scientia Sinica(Terrae), 2010, 40(11):1591-1597.
[39] PRATHER B E. Controls on reservoir distribution,architecture and stratigraphic trapping in slope settings. Marine and Petroleum Geology, 2003, 20:529-545.
[40] PRATHER B E, BYNRE O C, PIREMEZ C, et al. Sediment partitioning, continental slopes and base-of-slope systems. Basin Research, 2017, 29:394-416.
[41] 李磊, 王英民, 徐强, 等.南海北部陆坡地震地貌及深水重力流沉积过程主控因素. 中国科学:地球科学, 2012, 42(10):1533-1543. LI L, WANG Y M, XU Q, et al. Seismic geomorphology and main controls of deep-water gravity flow sedimentary process on the slope of the northern South China Sea. Scientia Sinica(Terrae), 2012, 42(10):1533-1543.
[42] ROSS W C, HALLIWELL B A, MAY J A, et al. Slope readjustment:a new model for the development of submarine fans and aprons. Geology, 1994, 22:511-514.
[43] HEDBERG H D. Continental margins from viewpoint of the petroleum geologist. AAPG Bulletin, 1970, 54(1):3-43.
[44] OLAFIRANYE K, JACKSON C A L, HODGSON D M. The role of tectonics and mass-transport complex emplacement on upper slope stratigraphic evolution:a 3D seismic case study from offshore Angola. Marine and Petroleum Geology, 2013, 44:196-216.
[45] 蔺鹏, 吴胜和, 张佳佳, 等.尼日尔三角洲盆地陆坡逆冲构造区海底扇分布规律. 石油与天然气地质, 2018, 39(5):1073-1086. LIN P, WU S H, ZHANG J J, et al. Distribution of submarine fans in the thrust fault zone of continental slope, Niger Delta Basin. Oil & Gas Geology, 2018, 39(5):1073-1086.
[46] PRATHER B E, BOOTH J R, STEFFENS G S, et al. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico. AAPG Bulletin, 1998, 82(5 A):701-728.
[47] PRATHER B E. Calibration and visualization of depositional process models for above-grade slopes:a case study from the Gulf of Mexico. Marine and Petroleum Geology, 2000, 17:619-638.
[48] 高红灿, 郑荣才, 魏钦廉, 等.碎屑流与浊流的流体性质及沉积特征研究进展.地球科学进展, 2012, 27(8):815-827. GAO H C, ZHENG R C, WEI Q L, et al. Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity currents. Advances in Earth Science, 2012, 27(8):815-827.
[49] 金杰华, 操应长, 王健, 等.深水砂质碎屑流沉积:概念、沉积过程与沉积特征.地质论评, 2019, 65(3):689-702. JIN J H, CAO Y C, WANG J, et al. Deep-water sandy debris flow deposits:concepts,sedimentary processes and characteristics. Geological Review, 2019, 65(3):689-702.
[50] POHL F, EGGENHUISEN J T, CARTIGNY M J B, et al. The influence of a slope break on turbidite deposits:an experimental investigation. Marine Geology, 2020, 424:106-160.
[1] FANG Rui, JIANG Yuqiang, CHEN Qin, ZENG Lingping, LUO Yuzhuo, ZHOU Yadong, DU Lei, YANG Guangguang. Sedimentary characteristics of Jurassic Shaximiao Formation in Wubaochang area, northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 47-58.
[2] YANG Fan, BIAN Baoli, LIU Huiying, YAO Zongquan, YOU Xincai, LIU Hailei, WEI Yanzhao. Sedimentary characteristics of fan delta in restricted lacustrine basin of Permian Xiazijie Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(5): 63-72.
[3] WANG Hang, YANG Haifeng, HUANG Zhen, BAI Bing, GAO Yanfei. A new model for sedimentary evolution of fluvial faices based on accommodation space change and its impact on hydrocarbon accumulation: a case study of Kenli-A structure in Laizhouwan Depression [J]. Lithologic Reservoirs, 2020, 32(5): 73-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: