Lithologic Reservoirs ›› 2011, Vol. 23 ›› Issue (2): 64-69.doi: 10.3969/j.issn.1673-8926.2011.02.012

Previous Articles     Next Articles

Thermodynamic calculation of laumontite dissolution and its geologic significance

ZHANG Xuehua1, HUANG Sijing 1,2, LAN Yefang1, HUANG Keke1, LIANG Rui1   

  1. 1. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China; 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
  • Online:2011-04-20 Published:2011-04-20

Abstract:

Based on thermodynamic calculation, the thermodynamic features of laumontite dissolution in different fluid are disscussed. The result indicates that: ①Gibbs free energy increment (ΔG) of the reactions involved laumontite dissolution is minus, so laumontite dissolution are all spontaneous reactions in diagenesis environment; ②Gibbs free energy increment (ΔG) of the reactions involved laumontite dissolution is plus relativity with burial depth, and the trend of laumontite dissolution in deeper burial depth is less than that in lower burial or the earth’s surface;③Laumontite dissolves easily and forms secondary pore in diagenesis environment of higher P CO2 , lower pH, decrease of Ca 2+ and increase of K + ; ④The reactions involved laumontite dissolution are accompanied by the decrease in the volume of the solids, the decrease in the volume of the solids in the reaction Lm- Ill is the most, and it consumes  K + and conquers dynamics balk of K-feldspar dissolution and makes more K-feldspar dissolution to form secondary pore. So the way which laumontite dissolve to form illite and quartz is most profitable to form reservoir.

Key words: lowresistivity characteristics, grain grade, highlymineralized formation brines, high bound water saturation, Anyue-Hechuan area

[1] 卢文忠,朱国华,李大成,等.川中地区侏罗系下沙溪庙组浊沸石砂岩储层的发现及意义[J].沉积储层,2004,(5):53-58.
[2] 杨晓萍,裘怿楠.鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系[J].沉积学报,2002,20(4):628-632.
[3] 白清华,柳益群,樊婷婷.鄂尔多斯盆地上三叠统延长组浊沸石分布及其成因分析[J].西北地质,2009,42(2):100-107.
[4] 牛小兵,朱玉双,梁晓伟,等.鄂尔多斯盆地盘古梁西长6 段储层主控因素分析[J].岩性油气藏,2009,21(4):47-52.
[5] 冯永春,王建民.鄂尔多斯盆地志丹油田永金地区长6 储层微观孔隙成因类型及特征[J].岩性油气藏,2008,20(4):47-52.
[6] 韩会平,王宝清,李勇,等.鄂尔多斯盆地侯北地区三叠系延长组长6 储层特征[J].西安石油大学学报:自然科学版,2005,20(3):67-70.
[7] 付国民,董满仓,张志升,等.浊沸石形成与分布及其对优质储层的控制作用———以陕北富县探区延长组长 3 油层为例[J].地球科学———中国地质大学学报,2010,35(1):107-114.
[8] 王成,邵红梅,洪淑新,等.松辽盆地北部深层碎屑岩浊沸石成因、演化及与油气关系研究[J].矿物岩石地球化学通报,2004,23(3):213-218.
[9] Wopfner H,Markwort S. Early diagenetic laumontite the lower Triassic manda beds of the Ruhuhu Basin,southern Tanzania[J]. Journal of Sedimentary Petrology,1991,61(1):65-72.
[10] Crossey L J,Frost B R,Surdam R C. Secondary porosity in laumontite-bearing sandstones,clastic diagenesis[J]. AAPG Memoir,1984,37:225-237.
[11] 赵国泉.松辽盆地深层储层岩石学特征及次生孔隙形成的热力学机制[D].北京:中国地质大学,2005.
[12] 黄可可,黄思静,佟宏鹏,等.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质通报,2009,28(4):474-482.
[13] 殷辉安.岩石学相平衡[M].北京:地质出版社,1988:78-110.
[14] 林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985:1-180.
[15] Helgeson H C,Delany J M,Nesbitt H W,et al. Summary and critique of the thermodynamic properties of rock-forming minerals [J].American Journal Science,1978, 278:1-298.
[16] Helgeson H C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV.Calculation of activity coefficients,osmotic coefficient,and apparentmolal and standard and relative partial molal properties to 600 ℃ and 5 kb[J].American Journal Science,1981,281:1 249-1 516.
[17] Stefansson A. Dissolution of primary minerals of basalt in natural waters. I. Calculation of mineral solubilities from 0 ℃ to 350 ℃[J].Chemical Geology,2001,172:225-250.
[1] GENG Yanfei, ZHANG Chunsheng, HAN Xiaofeng, YANG Dachao. Study on formation mechanism of low resistivity gas bearing reservoir in Anyue-Hechuan area [J]. Lithologic Reservoirs, 2011, 23(3): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: