Application of multi-attribute and neural network method to hydrocarbon reservoir prediction

  • ZHENG Hongjun ,
  • CAO Zhenglin ,
  • YAN Cunfeng ,
  • XU Ziyuan ,
  • SUN Songling
Expand
  • Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Jingzhou 434023, China

Online published: 2010-09-15

Abstract

Seismic attributes contain abundant geophysical information. There are so many seismic attributes and the relationship between attributes and reservoir characteristics is complicated. Single attribute analysis cannot assure the prediction accuracy. Artificial neural network technology has strong nonlinearmapping ability, so it can be applied to improve hydrocarbon prediction accuracy. The gradient descent learning algorithm is used in neural network. It can avoid local minimum and effectively speed up the network convergence to achieve the global optimal network and improve its forecasting performance.

Cite this article

ZHENG Hongjun , CAO Zhenglin , YAN Cunfeng , XU Ziyuan , SUN Songling . Application of multi-attribute and neural network method to hydrocarbon reservoir prediction[J]. Lithologic Reservoirs, 2010 , 22(3) : 118 -120 . DOI: 10.3969/j.issn.1673-8926.2010.03.023

References

[1] 朱广生,刘瑞林,编译. 人工神经网络———勘探地球物理学家的工具[J].国外油气勘探,1993,5(2):155-173.
[2] 熊翥. 21 世纪中期油气地球物理技术展望[M].北京:石油工业出版社,2006:117-150.
[3] 赵政璋,赵贤正,王英民.储层地震预测理论与实践[M].北京:石油工业出版社,2005:207-231.
[4] 陈遵德.储层地震属性优化方法[M].北京:石油工业出版社,1996:13-17.
[5] 李庆忠.岩性油气藏地震勘探若干问题探讨[J].岩性油气藏,2008,20(2):1-5.
[6] 刘伟方,段永华,高建虎,等.利用地震属性预测碳酸盐岩储层[J].岩性油气藏,2007,19(1):101-104.
[7] 熊翥.地层岩性油气藏勘探[M].岩性油气藏,2008,20(4):1-8.
[8] 赵力民. 波形分类技术在隐蔽油藏预测中的应用[J].石油勘探与开发,2001,28(6):53-55.
[9] 边立恩,贺振华,黄德济.饱含流体介质的地震波场特征及频率分布[J].岩性油气藏,2008,20(3):74-78.
[10] 曹卿荣,李佩,孔凯,等.应用地震属性分析技术刻画河道砂体[J].岩性油气藏,2007,19(2):93-96.
Outlines

/