Comparison among velocity analysis and inversion methods

  • XU Xiaohong ,
  • PAN Wei ,
  • GUO Zengqiang ,
  • DAI Lifei
Expand
  • School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

Online published: 2012-10-20

Abstract

Velocity es timation and modeling technique is a key issue in exploration seismic. As a typical inversion problem, velocity estimation should be carried out under the framework of Bayesian estimation. However, a series of techniques for velocity analysis and modeling are developed by the petroleumindustry. In viewof the present situation of research and application of velocity estimation and modeling technique, we try to analyze the current velocity estimation methods under the framework of Bayesian estimation. All the existing velocity estimation methods can be incorporated into the following two objective functions: the best correlation criterion (the best focusing criterion) in the image-domain or the least error criterion in the data-domain. The gradient-guided local optimization method and Monte Claro method can be used to estimate the seismic velocity in different scales. Under this framework, we can analyze the common features of all the currentmethods, and develop new methods and techniques for velocity estimation.

Cite this article

XU Xiaohong , PAN Wei , GUO Zengqiang , DAI Lifei . Comparison among velocity analysis and inversion methods[J]. Lithologic Reservoirs, 2012 , 24(5) : 1 -11 . DOI: 10.3969/j.issn.1673-8926.2012.05.001

References

[1] Deregowski S M. Common-offset migrations and velocity analysis[J]. First Break,1990,8(6):225-234.
[2] Doherty S M,Claerbout J F. Structure independent velocity estimation[J]. Geophysics,1976:41(5):850-881.
[3] Faye J P,Jeannot J P. Prestack migration velocities from depthfocusing analysis[J]. SEG Expanded Abstracts,1986,5:438-440.
[4] Al-Yahya K. Velocity analysis by iterative profile migration [J].Geophysics,1989,54(6):718-729.
[5] Chapman C H. The Radon transform and seismic tomography[M]∥Nolet G. Seismic tomography. Dordrecht:D. Reidel Publishing Company,1987:25-47.
[6] Sirgue L,Barkved O I,Gestel J P,et al. 3D waveform inversion on Valhall wide-azim-uth OBC[C]. EAGE Conference and Exhibition,U038,2009.
[7] Plessix R,Baeten G,Willem J,et al. Full waveform inversion and distance separated simultaneous sweeping:A study with a land seismic data set [J]. Geophysical Prospecting,2012,60 (4):1 -15.
[8] 刘守伟,王华忠,程玖兵,等.时空移动成像条件及偏移速度分析[J].地球物理学报,2008,51(6):1883-1891.
[9] 张凯. 叠前偏移速度分析方法研究[D].上海:同济大学,2008.
[10] Symes W W,Carazzone J J. Velocity inversion by differential semblance optimization[J]. Geophysics,1991,56(5):654-663.
[11] Shen P,Symes W W,Stolk C C. Differential semblance velocity analysis by wave-equation migration[J]. SEG Expanded Abstracts,2003,22:2135-2139.
[12] Shen P,Symes W W,Morton S,et al. Differential semblance velocity analysis via shot profile migration [J]. SEG Expanded Abstracts,2005,24:2249-2252.
[13] Berkhout A J. Pushing the limits of seismic imaging,partⅠ:Prestack migration in terms of double dynamic focusing[J]. Geophysics,1997,62(3):937-953.
[14] Kabir M M N,Verschuur D J. Migration velocity analysis using the common focus point technology[J]. SEG Expanded Abstract,1996,15:407-410.
[15] Kabir M M N,Verschuur D J. A constrained parametric inversion for velocity analysis based on CFP technology[J]. Geophysics,2000,65(4):1210-1222.
[16] 辛可锋,王华忠,马在田,等.共聚焦点层析速度建模方法[J].石油物探,2005,44(4):329-333.
[17] Biondi B, Sava P. Wave-equation migration velocity analysis[J].SEG Technical Program Expanded Abstracts,1999,18:1723 -1726.
[18] Tarantola A. Inversion of travel times and seismic waveforms[M]∥Nolet G. Seismic tomography. Dordrecht, Holland:D. Reidel Publishing Company,1987:135-157.
[19] 张兵. 基于深度域共成像点道集的层析速度反演与建模方法研究[D].上海:同济大学,2011.
[20] Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics,1984,49(8):1259-1266.
[21] Tarantola A. A strategy for nonlinear elastic inversion of seismic reflection data[J]. Geophysics,1986,51(10):1893-1903.
[22] Pratt R G. Inverse theory applied to multi-source cross-hole tomo-graphy,Part Ⅱ:Elastic wave-equation method[J]. GeophysicalProspecting,1990,38(3):311-330.
[23] Pratt R G,Worthington M H. Inverse theory applied to multisource cross-hole tomography,Part Ⅰ:Acoustic wave-equation method[J].Geophysical Prospecting,1990,38(3):287-310.
[24] Pratt R G, Shin C, Hicks G J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J]. Geophysical Journal International,1998,133(2):341-362.
[25] Pratt R G. Seismic waveform inversion in the frequency domain,Part Ⅰ:Theory and verification in a physical scale model[J]. Geophysics,1999,64(3):888-901.
[26] Pratt R G,Shipp R M. Seismic waveform inversion in the frequency domain,Part Ⅱ:Fault delineation in sediments using crosshole data [J]. Geophysics,1999,64(3):902-914.
[27] Shin C,Cha Y H. Waveform inversion in the Laplace domain[J].Geophysical Journal International,2008,173(3):922-931.
[28] Shin C, ChaYH.Waveforminversion in the Laplace-Fourier domain[J]. Geophysical Journal International,2009,177(3):1067-1079.
[29] Shin C,Min D J. Waveform inversion using a logarithmic wavefield [J]. Geophysics,2006,71(3):R31-R42.
[30] Bunks C,Saleck F M,Zaleski S,et al. Multiscale seismic waveform inversion[J]. Geophysics,1995,60(5):1457-1473.
Outlines

/