Comprehensive treatment of gas channeling at the later stage of CO2 flooding

  • WU Siyi ,
  • SIMA Liqiang ,
  • YUAN Long ,
  • WEN Xinfang
Expand
  • 1. Sinopec Huadong Branch Company, Nanjing 210011, China; 2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Online published: 2014-10-20

Abstract

It is difficult for the field to achieve the CO2 miscible flooding efficiency of indoor experiments which could reach more than 90%. Recovery factor is limited mainly by several aspects, namely, CO2 viscous fingering, gravity overlap and reservoir heterogeneity, which exert negative influence on CO2 sweep efficiency. On the other hand, gas channeling aggravates gradually and development conflicts intensify continuously at the later stage of production. This paper analyzed development effect of CO2 flooding, regarding layer series of development, injection-production structure, way of injection and injection profile, moreover, proposed technologies of strata subdivision, injection in the top, water alternating gas(WAG), polymer profile control and CO2+foam flooding. Good response has been observed after the onsite implementation. Reservoir overall gas-oil ratio decreased from 2 733.1 m3/m3 to 63.84  m3/m3, and daily oil production increased from 30.72 t(before gas injection) to 81.68 t(after gas injection). Generally, this anti-gas channeling comprehensive technology is of great significance for similar reservoir scenario design and gas channeling prevention.

Cite this article

WU Siyi , SIMA Liqiang , YUAN Long , WEN Xinfang . Comprehensive treatment of gas channeling at the later stage of CO2 flooding[J]. Lithologic Reservoirs, 2014 , 26(5) : 102 -106 . DOI: 10.3969/j.issn.1673-8926.2014.05.019

References

[1]高振环,刘中春,杜兴家.油田注气开采技术[M].北京:石油工业出版社,1994:1-176.
[2]沈平平,袁士义,韩冬,等.中国陆上油田提高采收率潜力评价及发展战略研究[J].石油学报,2001,22(1):45-48.
[3]杨彪,唐汝众,栾传振,等.国外 CO2 驱油防止粘性指进和重力超覆工艺[J].断块油气田,2003,10(2):64-66.
[4]叶安平,郭平,王绍平,等.多孔介质高温高压多组分气体-原油分子扩散系数研究[J].岩性油气藏,2012,24(5):111-115.
[5]郭平,李苗.低渗透砂岩油藏注 CO2 混相条件研究[J].石油与天然气地质,2007,28(5):687-692.
[6]刘伟,陈祖华.苏北复杂断块小型油藏 CO2 驱油先导试验研究[J].石油天然气学报(江汉石油学院学报),2008,30(2):147-149.
[7]陈祖华,蒲敏. CS 油藏 CT 复杂断块低渗透油藏 CO2 驱动态调整研究[J].石油天然气学报(江汉石油学院学报),2012,34(1):118-122.
 黄孝海等:异常高压产水气井三项式方程推导及应用产能方程[J].大庆石油学院院报,2010,34(1):43-46.
[7]代平.低渗透应力敏感油藏实验及数值模拟研究[D].成都:西南石油大学,2006.
[8]黄继新,彭仕宓,黄述旺,等.异常高压气藏储层参数应力敏感性研究[J].沉积学报,2005,23(4):620-625.
[9]朱中谦,王振彪,李汝勇,等.异常高压气藏岩石变形特征及其对开发的影响———以克拉 2 气田为例[J].天然气地球科学,2003,14(1):60-64.
[10]巢华庆,王玉普.复杂油藏试井技术[M].北京:石油工业出版社,2002:21-25. [11]李传亮.岩石应力敏感指数与压缩系数之间的关系式[J].岩性油气藏,2007,19(4):95-98.
[12]郭煜锴,刘德华,赵楠,等.水平气井流入动态计算新方法研究[J].石油天然气学报,2009,31(1):118-120.
[13]罗银富,黄炳光,王怒涛,等.异常高压气藏气井三项式产能方程[J].天然气工业,2008,28(12): 81-82.
[14]陈春燕.异常高压气藏气井产能方程求解的简易方法[J].天然气工业,2007,27(4):88-89.
Outlines

/