岩性油气藏 ›› 2025, Vol. 37 ›› Issue (3): 95–107.doi: 10.12108/yxyqc.20250309

• 地质勘探 • 上一篇    

鄂尔多斯盆地陇东地区三叠系长81亚段岩石相测井识别及勘探意义

张兆辉1,2, 张皎生3, 刘俊刚3, 邹建栋3, 张建伍3, 廖建波4, 李智勇4, 赵雯雯1   

  1. 1. 新疆大学 地质与矿业工程学院, 乌鲁木齐 830047;
    2. 甘肃省油气资源研究重点实验室, 兰州 730000;
    3. 中国石油长庆油田分公司勘探开发研究院, 西安 710018;
    4. 中国石油勘探开发研究院西北分院, 兰州 730020
  • 收稿日期:2024-10-28 修回日期:2024-11-20 发布日期:2025-05-10
  • 第一作者:张兆辉(1982—),男,博士,副教授,主要从事测井地质学及非常规油气储层评价方面的教学与研究工作。地址:(830046)新疆乌鲁木齐市水磨沟区新疆大学地质与矿业工程学院。Email:zhangzhaohui@xju.edu.cn。
  • 通信作者: 张皎生(1977—),女,硕士,高级工程师,主要从事低渗透油藏稳产技术研究。Email:zhangjs_cq@petrochina.com.cn。
  • 基金资助:
    国家自然科学基金项目“致密砂岩沉积层理地震响应机制及岩石相预测方法研究”(编号:42464006)、疆维吾尔自治区“天池英才”计划项目“基于沉积—成岩补偿评价的致密砂岩储层甜点预测”(编号:51052300560)和甘肃省油气资源研究重点实验室开放基金项目“致密砂岩全尺度岩石相数字建模及其地震响应分析”(编号:SZDKFJJ2023007)联合资助。

Lithofacies identification using conventional logging curves and its exploration significance,Triassic Chang 81 sub-member,Longdong area,Ordos Basin

ZHANG Zhaohui1,2, ZHANG Jiaosheng3, LIU Jungang3, ZOU Jiandong3, ZHANG Jianwu3, LIAO Jianbo4, LI Zhiyong4, ZHAO Wenwen1   

  1. 1. School of Geology and Mining Engineering, Xinjiang University, Urumqi 830047, China;
    2. Key Laboratory of Petroleum Resources Research, Gansu Province, Lanzhou 730000, China;
    3. Research Institute of Exploration and Development, Changqing Oilfield Branch Company of PetroChina, Xi'an 710018, China;
    4. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China
  • Received:2024-10-28 Revised:2024-11-20 Published:2025-05-10

摘要: 利用岩心和露头资料,结合测井解释成果,划分了鄂尔多斯盆地陇东地区三叠系长81亚段致密砂岩的岩石相类型,并指出其测井响应特征。通过主成分分析优选出岩石相敏感测井参数,结合随机森林分类器的小方差特性和XGBoost算法的小偏差优势,构建Stacking集成学习模型,可智能识别岩石相。研究结果表明:①鄂尔多斯盆地陇东地区三叠系长81亚段共发育均质分流河道砂岩相、非均质分流河道砂岩相、均质河口坝砂岩相、非均质河口坝砂岩相、非均质漫溢砂岩相和泥岩相6种岩石相类型。均质分流河道砂岩相和均质河口坝砂岩相的石英、长石含量均较高,粒间孔、粒内溶孔均较发育,平均孔隙度为8.32%,平均渗透率为1.81 mD,是有利岩石相,以高能沉积环境形成的均质块状层理为识别标志;非均质分流河道砂岩相和非均质河口坝砂岩相以低能环境中发育的非均质性层理为特征。②Stacking集成学习模型明显提高了随机森林和XGBoost算法的岩石相识别正确率,达到了94.2%,为有利岩石相空间展布刻画提供了可靠的技术方法。③沉积作用决定了岩石相的空间展布,均质分流河道砂岩相主要发育在分流河道中部主体部位,呈条带状延伸至平均低水位线附近,非均质分流河道砂岩相则主要发育在河道边部侧翼部位,分布在均质河道砂岩相外围,呈包络状。多期均质分流河道砂岩相叠置区物性最好,为勘探开发有利区。

关键词: 致密砂岩, 岩石相, 集成学习模型, XGBoost算法, 测井识别, 长81, 三叠系, 陇东地区, 鄂尔多斯盆地

Abstract: Using core description,outcrop analysis,combined with logging interpretation,the types and logging response characteristic of lithofacies in tight sandstone of Chang 81 sub-member of the Yanchang Formation in the Longdong area of Ordos Basin have been classified and analyzed. Based on principal component analysis, sensitive logging parameters related to lithofacies were optimized. By leveraging the small variance characteristics of the random forest classifier and the minimal deviation of the XGBoost algorithm,a Stacking ensemble learning model was constructed to intelligently identify lithofacies. The results show that:(1)The Chang 81 submember in the Longdong area comprises six types of lithofacies:homogeneous fluvial channel lithofacies,heterogeneous fluvial channel lithofacies,homogeneous distributary mouth bar lithofacies, heterogeneous distributary mouth bar lithofacies,heterogeneous overtopping lithofacies,and mudstone lithofacies. The homogeneous fluvial channel and homogeneous distributary mouth bar facies exhibit high quartz and feldspar content,with relatively well-developed intergranular and intragranular solution pores. The average porosity is 8.32%,and the average permeability is 1.81 mD. These lithofacies represent a favorable lithofacies type,characterized by homogeneous blocky bedding formed in high-energy sedimentary environments. In contrast,the heterogeneous distributary channel lithofacies and heterogeneous distributary mouth bar lithofacies are distinguished by heterogeneous bedding formed under medium-low energy conditions.(2)In comparison to the Random Forest and XGBoost algorithms,the accuracy of the Stacking learning model in identifying lithofacies reached 94.2%. This result provides reliable methodological and technical support for characterizing lithofacies distribution.(3)The sedimentary process governs the spatial distribution of lithofacies,which serve as the material basis for sedimentary beddings. Homogeneous fluvial channel facies are predominantly developed in the central part of the distributary fluvial channel, exhibiting a banded structure that extends to the average low water level. In contrast,heterogeneous fluvial channel lithofacies are primarily located at the edges of the fluvial channel,surrounding the homogeneous fluvial channel lithofacies. The most favorable reservoir petrophysical properties,characterized by good physical attributes,are found in the overlapping areas of multiple periods of homogeneous fluvial channel lithofacies,marking them as potential regions for exploration and development.

Key words: tight sandstone, lithofacies, ensemble learning model, XGBoost algorithms, logging identification, Chang 81 sub-member, Triassic, Longdong area, Ordos Basin

中图分类号: 

  • TE122
[1] MIALL A D. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development:A reality check[J]. AAPG Bulletin,2006,90(7):989-1002.
[2] MIALL A D. Fluvial depositional systems[M]. Berlin:Springer, 2014:322.
[3] 张昌民,王绪龙,朱锐,等.准噶尔盆地玛湖凹陷百口泉组岩石相划分[J].新疆石油地质,2016,37(5):606-614. ZHANG Changmin,WANG Xulong,ZHU Rui,et al. Litho-facies classification of Baikouquan Formation in Mahu Sag,Junggar Basin[J]. Xinjiang Petroleum Geology,2016,37(5):606-614.
[4] 刘君龙,刘忠群,肖开华,等.致密砂岩有利岩石相表征及油气地质意义:以四川盆地新场地区三叠系须家河组二段为例[J].石油勘探与开发,2020,47(6):1111-1121. LIU Junlong,LIU Zhongqun,XIAO Kaihua,et al. Characterization of favorable lithofacies in tight sandstone reservoirs and its significance for gas exploration and exploitation:A case study of the 2nd member of Triassic Xujiahe Formation in the Xinchang area,Sichuan Basin[J]. Petroleum Exploration and Development,2020,47(6):1111-1121.
[5] 柴毓,王贵文.致密砂岩储层岩石物理相分类与优质储层预测:以川中安岳地区须二段储层为例[J].岩性油气藏,2016, 28(3):74-85. CHAI Yu,WANG Guiwen. Petrophysical facies classification of tight sandstone reservoir and high-quality reservoir prediction:A case study from the second member of Xujiahe Formation in Anyue area,central Sichuan Basin[J]. Lithologic reservoirs,2016, 28(3):74-85.
[6] 赖锦,王贵文,王书南,等.碎屑岩储层成岩相测井识别方法综述及研究进展[J]. 中南大学学报(自然科学版),2013,44(12):4942-4953. LAI Jin,WANG Guiwen,WANG Shunan,et al. Overview and research progress in logging recognition method of clastic reservoir diagenetic facies[J]. Journal of Central South University (Science and Technology),2013,44(12):4942-4953.
[7] 张华,叶青,郇金来,等.基于成分指示因子的复杂岩相识别:以南海宝岛凹陷深水深层低渗气藏为例[J].海洋地质前沿, 2024,40(7):87-95. ZHANG Hua,YE Qing,HUAN Jinlai,et al. Identification of complex lithofacies based on compositional indicators:A case study of deep-water low-permeability gas reservoir in Baodao Sag,South China Sea[J]. Marine Geology Frontiers,2024,40(7):87-95.
[8] 田明智,朱超,李森明,等.湖相碳酸盐岩测井岩相识别技术与应用:以柴达木盆地英西地区为例[J].中国石油勘探,2023, 28(1):135-143. TIAN Mingzhi,ZHU Chao,LI Senming,et al. Application of logging lithofacies identification technology of lacustrine carbonate rocks:A case study of Yingxi area,Qaidam Basin[J]. China Petroleum Exploration,2023,28(1):135-143.
[9] 刘跃杰,刘书强,马强,等. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用[J].岩性油气藏,2019,31(4):101-111. LIU Yuejie,LIU Shuqiang,MA Qiang,et al. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin[J]. Lithologic Reservoirs,2019,31(4):101-111.
[10] 武中原,张欣,张春雷,等.基于LSTM循环神经网络的岩性识别方法[J].岩性油气藏,2021,33(3):120-128. WU Zhongyuan,ZHAGN Xin,ZHANG Chunlei,et al. Lithology identification based on LSTM recurrent neural network[J]. Lithologic Reservoirs,2021,33(3):120-128.
[11] HUANG Weilin,GAO Fei,LIAO Jianping,et al. A deep learning network for estimation of seismic local slopes[J]. Petroleum Science,2021,18:92-105.
[12] DONG Shaoqun,ZENG Lianbo,DU Xiangyi,et al. Lithofacies identification in carbonate reservoirs by multiple kernel Fisher discriminant analysis using conventional well logs:A case study in A oilfield,Zagros Basin,Iraq[J]. Journal of Petroleum Science and Engineering,2022,210:110081.
[13] HOU Xianmu,LIAN Peiqing,ZHAO Jiuyu,et al. Identification of carbonate sedimentary facies from well logs with machine learning[J]. Petroleum Research,2024,9:165-175.
[14] 邵晓州,王苗苗,齐亚林,等.鄂尔多斯盆地平凉北地区长8油藏特征及成藏主控因素[J].岩性油气藏,2021,33(6):59-69. SHAO Xiaozhou,WANG Miaomiao,QI Yalin,et al. Characteristics and main controlling factors of Chang 8 reservoir in northern Pingliang area,Ordos Basin[J]. Lithologic Reservoirs,2021,33(6):59-69.
[15] 周勇,徐黎明,纪友亮,等.致密砂岩相对高渗储层特征及分布控制因素:以鄂尔多斯盆地陇东地区延长组长82为例[J]. 中国矿业大学学报,2017,46(1):106-120. ZHOU Yong,XU Liming,JI Youliang,et al. Characteristics and distributing controlling factors of relatively high permeability reservoir:A case study from Chang 82 sandstones of Yanchang formation in Longdong area,Ordos basin[J]. Journal of China University of Mining & Technology,2017,46(1):106-120.
[16] 陈世加,雷俊杰,刘春,等.鄂尔多斯盆地姬塬-吴起地区三叠系延长组长6段成藏控制因素[J].石油勘探与开发,2019, 46(2):241-253. CHEN Shijia,LEI Junjie,LIU Chun,et al. Factors controlling the reservoir accumulation of Triassic Chang 6 member in JiyuanWuqi area,Ordos Basin,NW China[J]. Petroleum Exploration and Development,2019,46(2):241-253.
[17] 朱如凯,白斌,袁选俊,等.利用数字露头模型技术对曲流河三角洲沉积储层特征的研究[J].沉积学报,2013,31(5):867-877. ZHU Rukai,BAI Bin,YUAN Xuanjun,et al. A new approach for outcrop characterization and geostatistical analysis of meandering Channels sandbodies within a delta plain setting using digital outcrop models:Upper Triassic Yanchang tight sandstone formation,Yanhe outcrop,Ordos Basin[J]. Acta Sedimentologica Sinica,2013,31(5):867-877.
[18] 刘桂珍,高伟,张丹丹,等.姬塬地区长81亚油层组浅水型三角洲砂体结构及成因[J].岩性油气藏,2019,31(2):16-23. LIU Guizhen,GAO Wei,ZHANG Dandan,et al. Sandbody structure and its genesis of shallow-water delta of Chang 81 reservoir in Jiyuan area,Ordos Basin[J]. Lithologic Reservoirs,2019, 31(2):16-23.
[19] ZHANG Zhaohui,LI Zhiyong,DENG Xiuqin,et al. Multiparameters logging identifying method for sand body architectures of tight sandstones:A case study of the Triassic Chang 9 member,Longdong area,Ordos Basin,NW China[J]. Journal of Petroleum Science and Engineering,2022,216:110824.
[20] 刘昊伟,王键,刘群明,等.鄂尔多斯盆地姬塬地区上三叠统延长组长8油层组有利储集层分布及控制因素[J].古地理学报,2012,14(3):285-294. LIU Haowei,WANG Jian,LIU Qunming,et al. Favorable reservoir distribution and its controlling factors of the Chang 8 interval of Upper Triassic Yanchang Formation in Jiyuan area,Ordos Basin[J]. Journal of Palaeogeography,2012,14(3):285-294.
[21] 姚泾利,楚美娟,白嫦娥,等.鄂尔多斯盆地延长组长82小层厚层砂体沉积特征及成因分析[J].岩性油气藏,2014,26(6):40-45. YAO Jingli,CHU Meijuan,BAI Change,et al. Sedimentary characteristics and genesis of thick layer sand body of Chang 82 sublayer in Ordos Basin[J]. Lithologic Reservoirs,2014,26(6):40-45.
[22] 刘化清,李相博,完颜容,等.鄂尔多斯盆地长8油层组古地理环境与沉积特征[J].沉积学报,2011,29(6):1086-1095. LIU Huaqing,LI Xiangbo,WANYAN Rong,et al. Palaeogeographic and sedimentological characteristics of the Triassic Chang 8,Ordos Basin,China[J]. Acta Sedimentologica Sinica,2011, 29(6):1086-1095.
[23] 黄彦庆,刘忠群,王爱,等.四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J].岩性油气藏,2023, 35(2):21-30. HUANG Yanqing,LIU Zhongqun,WANG Ai,et al. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area,Sichuan Basin[J]. Lithologic Reservoirs,2023,35(2):21-30.
[24] 刘翰林,邱镇,徐黎明,等.鄂尔多斯盆地陇东地区三叠系延长组浅水三角洲砂体特征及厚层砂体成因[J].石油勘探与开发,2021,48(1):106-117. LIU Hanlin,QIU Zhen,XU Liming,et al. Distribution of shallow water delta sand bodies and the genesis of thick layer sand bodies of the Triassic Yanchang Formation,Longdong Area,Ordos Basin[J]. Petroleum Exploration and Development,2021,48(1):106- 116.
[25] 牟蜚声,尹相东,胡琮,等.鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J].岩性油气藏,2024,36(4):71-84. MOU Feisheng,YIN Xiangdong,HU Cong,et al. Distribution characteristics and controlling factors of tight oil of Triassic Chang 7 member in northern Shaanxi area,Ordos Basin[J]. Lithologic Reservoirs,2024,36(4):71-84.
[26] 米伟伟,谢小飞,曹红霞,等.鄂尔多斯盆地东南部二叠系山2- 盒8段致密砂岩储层特征及主控因素[J].岩性油气藏,2022, 34(6):101-117. MI Weiwei,XIE Xiaofei,CAO Hongxia,et al. Characteristics and main controlling factors of tight sandstone reservoirs of Permian Shan 2 to He 8 members in southeastern Ordos Basin[J]. Lithologic Reservoirs,2022,34(6):101-117.
[27] 闫雪莹,桑琴,蒋裕强,等.四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素素[J].岩性油气藏, 2024,36(6):98-109. YAN Xueying,SANG Qin,JIANG Yuqiang,et al. Main controlling factors for the high yield of tight oil in the Jurassic Da'anzhai Section in the western area of Gongshanmiao,Sichuan Basin[J]. Lithologic Reservoirs,2024,36(6):98-109.
[28] 刘芬,朱筱敏,李洋,等.鄂尔多斯盆地西南部延长组重力流沉积特征及相模式[J].石油勘探与开发,2015,42(5):577-588. LIU Fen,ZHU Xiaomin,LI Yang,et al. Sedimentary characteristics and facies model of gravity flow deposits of Late Triassic Yanchang Formation in southwestern Ordos Basin,NW China[J]. Petroleum Exploration and Development,2015,42(5):577-588.
[29] 李士祥,楚美娟,黄锦绣,等.鄂尔多斯盆地延长组长8油层组砂体结构特征及成因机理[J].石油学报,2013,34(3):435-444. LI Shixiang,CHU Meijuan,HUANG Jinxiu,et al. Characteristics and genetic mechanism of sandbody architecture in Chang- 8 oil layer of Yanchang Formation,Ordos Basin[J]. Acta Petrolei Sinica,2013,34(3):435-444.
[30] 马瑶,史涛,王冠男,等.陇东地区长82砂体结构特征及成因模式[J].西北大学学报(自然科学版),2019,49(5):765-771. MA Yao,SHI Tao,WANG Guannan,et al. Sandbody structural characteristics and genetic model of Chang 82 in Longdong area[J]. Journal of Northwest University(Natural Science Edition), 2019,49(5):765-771.
[31] 测井学编写组.测井学[M].北京:石油工业出版社,1998. Logging science writing group. Logging[M]. Beijing:Petroleum Industry Press,1998.
[32] 李宁,徐彬森,武宏亮,等. 人工智能在测井地层评价中的应用现状及前景[J].石油学报,2021,42(4):508-522. LI Ning,XU Bingsen,WU Hongliang,et al. Application status and prospects of artificial intelligence in well logging and formation evaluation[J]. Acta Petrolei Sinica,2021,42(4):508-522.
[33] 董少群,曾联波,车小花,等.人工智能在致密储层裂缝测井识别中的应用[J].地球科学,2023,48(7):2443-2461. DONG Shaoqun,ZENG Lianbo,CHE Xiaohua,et al. Application of artificial intelligence in fracture identification using well logs in tight reservoirs[J]. Earth Science,2023,48(7):2443-2461.
[34] 王贵文,邓清平,唐为清.测井曲线谱分析方法及其在沉积旋回研究中的应用[J].石油勘探与开发,2002,29(1):93-95. WANG Guiwen,DENG Qingping,TANG Weiqing. The application of spectral analysis of logs in depositional cycle studies[J]. Petroleum Exploration and Development,2002,29(1):93-95.
[35] JIANG Shiyi,SUN Panke,LYU Fengqing,et al. Machine learning(ML)for fluvial lithofacies identification from well logs:A hybrid classification model integrating lithofacies characteristics,logging data distributions,and ML models applicability[J]. Geoenergy Science and Engineering,2024,233:212587.
[36] TIAN Miao,OMRE Henning,XU Huaimin. Inversion of well logs into lithology classes accounting for spatial dependencies by using hidden markov models and recurrent neural networks[J]. Journal of Petroleum Science and Engineering,2021,196:107598.
[37] LUBO-ROBLES D,BEDLE H,MARFURT K J,et al. Evaluation of principal component analysis for seismic attribute selection and self-organizing maps for seismic facies discrimination in the presence of gas hydrates[J]. Marine and Petroleum Geology,2023,150:106097.
[38] REN Quan,ZHANG Hongbing,ZHANG Dailu,et al. Lithology identification using principal component analysis and particle swarm optimization fuzzy decision tree[J]. Journal of Petroleum Science and Engineering,2023,220:111233.
[39] CHEN Tianqi,GUESTRIN C. XGBoost:A scalable tree Boosting system[J]. CoRR,2016,1603:785-794.
[40] DOU Jie,YUNUS A P,BUI D T,et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfallinduced landslide susceptibility in the Izu-Oshima Volcanic Island,Japan[J]. Science of the Total Environment,2019,662:332-346.
[41] YAN Tie,XU Rui,SUN Shihui,et al. A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm[J]. Petroleum Science,2024, 21:1135-1148.
[42] AZARHOOSH M J,KOOHMISHI M. Prediction of hydraulic conductivity of porous granular media by establishment of random forest algorithm[J]. Construction and Building Materials, 2023,366:130065.
[43] 黄莉莎,闫建平,郭伟,等.基于随机森林回归算法的低电阻率页岩气储层饱和度评价[J].测井技术,2023,47(1):22-28. HUANG Lisha,YAN Jianping,GUO Wei,et al. Evaluation of Low resistivity shale gas reservoir saturation based on random forest regression method[J]. Well Logging Technology,2023, 47(1):22-28.
[44] DONG Shaoqun,SUN Yanming,XU Tao,et al. How to improve machine learning models for lithofacies identification by practical and novel ensemble strategy and principles[J]. Petroleum Science,2023,20:733-752.
[45] MARKOVIC S,BRYAN J L,REZAEE R,et al. Application of XGBoost model for in-situ water saturation determination in Canadian oil-sands by LF-NMR and density data[J]. Scientific Reports,2022,12(1):13984.
[46] SUN Hao,LUO Qiang,XIA Zhaohui,et al. Bottomhole pressure prediction of carbonate reservoirs using XGBoost[J]. Processes,2024,12(1):125.
[1] 肖文华, 杨军, 严宝年, 王建国, 李少勇, 马淇琳, 李宗霖, 薛欢召. 鄂尔多斯盆地环庆地区三叠系长8致密砂岩储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(3): 23-32.
[2] 邓高山, 董雪梅, 余海涛, 张洁, 岳喜伟, 任军民, 姜涛. 准噶尔盆地沙湾凹陷三叠系百口泉组油气成藏条件及勘探潜力[J]. 岩性油气藏, 2025, 37(3): 59-72.
[3] 杨旭, 白鸣生, 龚汉渤, 李皋, 陶祖文. 川西新场地区三叠系须二段构造裂缝特征及定量预测[J]. 岩性油气藏, 2025, 37(3): 73-83.
[4] 李想, 付磊, 魏璞, 李俊飞, 徐港, 曹倩倩, 钟杨, 王振鹏. 沉积古地貌恢复及古地貌对沉积体系的控制作用——以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏, 2025, 37(2): 38-48.
[5] 胡心玲, 荣焕青, 杨伟, 张再昌, 漆智先. 东营凹陷八面河地区古近系沙四段湖相白云岩测井识别及应用[J]. 岩性油气藏, 2025, 37(1): 13-23.
[6] 梁锋, 曹哲. 鄂尔多斯盆地华池地区三叠系长7页岩油储层特征、形成环境及富集模式[J]. 岩性油气藏, 2025, 37(1): 24-40.
[7] 杨杰, 张文萍, 丁朝龙, 石存英, 马云海. 川中地区三叠系须家河组二段致密气储层特征及主控因素[J]. 岩性油气藏, 2025, 37(1): 137-148.
[8] 卫欢, 单长安, 朱松柏, 黄钟新, 刘汉广, 朱兵, 吴长涛. 库车坳陷克深地区白垩系巴什基奇克组致密砂岩裂缝发育特征及地质意义[J]. 岩性油气藏, 2025, 37(1): 149-160.
[9] 吴佳, 赵卫卫, 刘钰晨, 李慧, 肖颖, 杨迪, 王嘉楠. 鄂尔多斯盆地延安地区三叠系长7页岩源储配置及油气富集规律[J]. 岩性油气藏, 2025, 37(1): 170-181.
[10] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[11] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[12] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[13] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[14] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[15] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!