岩性油气藏 ›› 2025, Vol. 37 ›› Issue (5): 166–177.doi: 10.12108/yxyqc.20250515

• 地质勘探 • 上一篇    

珠江口盆地惠州凹陷古近纪源-汇系统及其控储作用

严宇洋1, 熊连桥2, 何幼斌1, 陈莹2, 赵仲祥1, 刘圣乾1, 罗进雄1, 冯斌3   

  1. 1. 长江大学 地球科学学院, 武汉 430100;
    2. 中海石油研究总院有限责任公司, 北京 100028;
    3. 中国石油集团测井有限公司 长庆分公司, 西安 710000
  • 收稿日期:2025-02-15 修回日期:2025-03-30 发布日期:2025-09-06
  • 第一作者:严宇洋(1999—),男,长江大学在读硕士研究生,研究方向为储层地质学。地址:(430100)湖北省武汉市蔡甸区大学路111号长江大学。Email:201600615@yangtzeu.edu.cn。
  • 通信作者: 何幼斌(1964—),男,博士,教授,主要从事沉积学方面的教学与研究工作。Email:100709@yangtzeu.edu.cn。
  • 基金资助:
    国家自然科学基金联合基金项目“南海北部深水区深层温压场差异性演化对优质储层的控制”(编号:U24B2016)与中海石油有限公司科研项目“中国近海盆地潜在富油凹陷资源潜力、成藏机制与突破方向”(编号:YXKY-ZX012021)联合资助。

Source-to-sink system of Paleogene in Huizhou Sag of Pearl River Mouth Basin and its control on reservoir

YAN Yuyang1, XIONG Lianqiao2, HE Youbin1, CHEN Ying2, ZHAO Zhongxiang1, LIU Shengqian1, LUO Jinxiong1, FENG Bin3   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. China National Offshore Oil Corporation, Beijing 100028, China;
    3. Changqing Branch, China National Logging Corporation, Xi'an 710000, China
  • Received:2025-02-15 Revised:2025-03-30 Published:2025-09-06

摘要: 珠江口盆地惠州凹陷古近纪构造演化复杂,源-汇要素多变。基于钻井、地震、铸体薄片、碎屑锆石年龄测试等资料,开展了惠州凹陷源-汇系统及其控储作用研究。研究结果表明:①惠州凹陷古近纪发育低凸起断槽型、内源转换带型和外源转换带型3类源-汇系统。低凸起断槽型源-汇系统母岩以盆内花岗岩基底为主,经同向断槽搬运,发育小型辫状河三角洲;内源转换带型源-汇系统母岩主要为花岗岩基底,经转换带搬运,发育中型辫状河三角洲,受峡湾地形影响,与相邻扇三角洲沉积体偶尔叠置;外源转换带型源-汇系统主要由盆外水系供源,搬运距离较远,仅局部有少量内源混入,发育大型辫状河三角洲。②研究区储层规模与物性受母岩成分、搬运距离、搬运通道形态、沉积相与沉积古地貌共同控制。③研究区发育内源溶蚀型、混源交汇型与低凸起滩坝型3类优质储层,其中外源转换带与盆内低凸起交汇处的混源交汇型储层物性最好。

关键词: 源-汇系统, 低凸起断槽, 内源转换带, 外源转换带, 辫状河三角洲, 文昌组, 恩平组, 古近系, 惠州凹陷, 珠江口盆地

Abstract: Paleogene tectonic evolution of Huizhou Sag in Pearl River Mouth Basin is complex,and the sourceto-sink elements are variable. Based on data obtained from drilling,seismic,petrographic thin section,detrital zircon geochronology,the source-to-sink system and its control on reservoir was studied. The results show that: (1)Three types of source-to-sink systems developed in Paleogene of Huizhou Sag:the low uplift fault-trough type,the intra-depression transfer zone type,and the extra-depression transfer zone type. The parent rocks of the low uplift fault-trough type source-to-sink system were mainly the granite basement within the basin,transported through the same-direction fault troughs,and developed small-scale braided river deltas. The parent rocks of the intra-depression transfer zone type source-to-sink system were mainly the granite basement,transported via the transfer zone,and developed medium-scale braided river deltas. Affected by the fjord topography,they occasionally superimposed with the adjacent fan deltas sedimentary bodies. The extra-depression transfer zone type source-to-sink system was mainly sourced from the external water system,with a long transport distance and only a small amount of internal source mixing,developed large-scale braided river deltas.(2)The scale and physical properties of reservoirs in the study area are jointly controlled by parent rock composition,transport distance,transport channel morphology,sedimentary facies,and paleogeomorphology of the sedimentary period. (3)There are three types of high-quality reservoirs:the endogenous dissolution type,the mixed-source convergence type,and the low-uplift beach-bar type. The reservoir physical properties of the mixed-source convergence type at the junction of the exogenous transfer zone and the low uplift within the basin are the best.

Key words: source-to-sink system, low uplift fault-trough, intra-depression transfer zone, extra-depression transfer zone, braided river delta, Wenchang Formation, Enping Formation, Paleogene, Huizhou Sag, Pearl River Mouth Basin

中图分类号: 

  • TE122.2
[1] 高抒. 美国《洋陆边缘科学计划2004》述评[J]. 海洋地质与第四纪地质,2005,25(1):119-123. GAO Shu. Comments on the"NSF Margins Program Science Plans 2004"[J]. Marine Geology & Quaternary Geology,2005, 25(1):119-123.
[2] ALLEN P A. Form landscapes into geological history[J]. Nature, 2008,451(17):274-276.
[3] SØMME T O,HANSEN W H,MARTINSEN O J,et al. Relationships between morphological and sedimentological parameters in source-to-sink systems:A basis for predicting semiquantitative characteristics in subsurface systems[J]. Basin Research,2009,21(4):361-387.
[4] CARTER L,ORPIN A R,KUEHL S A. From mountain source to ocean sink-the passage of sediment across an active margin, waipaoa sedimentary system,New Zealand[J]. Marine Geology,2010,270(1/2/3/4):1-10.
[5] 徐长贵. 陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式[J]. 中国海上油气,2013,25(4):1-11. XU Changgui. Controlling sand principle of source-sink coupling in time and space in continental rift basins:Basic idea, conceptual systems,and controlling sand models[J]. China Offshore Oil and Gas,2013,25(4):1-11.
[6] 林畅松,夏庆龙,施和生,等. 地貌演化、源-汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20. LIN Changsong,XIA Qinglong,SHI Hesheng,et al. Geomorphological evolution,source to sink system and basin analysis[J]. Earth Science Frontiers,2015,22(1):9-20.
[7] 董桂玉,何幼斌. 陆相断陷盆地基准面调控下的古地貌要素耦合控砂机制[J].石油勘探与开发,2016,43(4):529-539. DONG Guiyu,HE Youbin. Mechanism of sand body prediction in a continental rift basin by coupling paleo geomorphic elements under the control of base level[J]. Petroleum Exploration and Development,2016,43(4):529-539.
[8] 于兴河,姜辉,李胜利,等. 中国东部中、新生代陆相断陷盆地沉积充填模式及其控制因素:以济阳坳陷东营凹陷为例[J]. 岩性油气藏,2007,19(1):39-45. YU Xinghe,JIANG Hui,LI Shengli,et al. Depositional filling models and controlling factors on Mesozoic and Cenozoic fault basins of terrestrial in eastern China:A case study of Dongying Sag of Jiyang Depression[J]. Lithologic Reservoirs,2007,19(1):39-45.
[9] 朱红涛,徐长贵,朱筱敏,等. 陆相盆地源-汇系统要素耦合研究进展[J]. 地球科学,2017,42(11):1851-1870. ZHU Hongtao,XU Changgui,ZHU Xiaomin,et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science,2017,42(11):1851-1870.
[10] 杨丽莎,陈彬滔,马轮,等. 陆相湖盆坳陷期源-汇系统的要素特征及耦合关系:以南苏丹Melut盆地北部坳陷新近系Jimidi组为例[J]. 岩性油气藏,2021,33(3):27-38. YANG Lisha,CHEN Bintao,MA lun,et al. Element feature and coupling model of source-to-sink system in depression lacustrine basin:A case study of the Neogene Jimidi Formation in Melut Basin,South Sudan[J]. Lithologic Reservoirs,2021, 33(3):27-38.
[11] 刘震,陈艳鹏,赵阳,等. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏,2007,19(2):121-127. LIU Zhen,CHEN Yanpeng,ZHAO Yang,et al. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs,2007,19(2):121-127.
[12] 周立宏,肖敦清,蒲秀刚,等. 陆相断陷湖盆复式叠合油气成藏与优势相富集新模式:以渤海湾盆地歧口凹陷为例[J]. 岩性油气藏,2010,22(1):7-11. ZHOU Lihong,XIAO Dunqing,PU Xiugang,et al. New pattern of composite superimposed reservoirs and advantageous phase accumulation in continental rifted lake basin:A case study from Qikou Sag of Bohai Bay Basin[J]. Lithologic Reservoirs,2010,22(1):7-11.
[13] 杜晓峰,王清斌,庞小军,等. 渤中凹陷石南陡坡带东三段源汇体系定量表征[J]. 岩性油气藏,2018,30(5):1-10. DU Xiaofeng,WANG Qingbin,PANG Xiaojun,et al. Quantitative characterization of source-sink system of Ed3 in Shinan steep slope zone,Bozhong Depression[J]. Lithologic Reservoirs,2018,30(5):1-10.
[14] 刘强虎,朱筱敏,李顺利,等. 沙垒田凸起西部断裂陡坡型源- 汇系统[J]. 地球科学,2017,42(11):1883-1896. LIU Qianghu,ZHU Xiaomin,LI Shunli,et al. Source-to-sink system of the steep slope fault in the western Shaleitian uplift[J]. Earth Science,2017,42(11):1883-1896.
[15] 谈明轩,朱筱敏,张自力,等. 古"源-汇"系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质,2020,41(5):1107-1118. TAN Mingxuan,ZHU Xiaomin,ZHANG Zili,et al. Summary of sedimentological issues and fundamental approaches in terms of ancient source-to-sink systems[J]. Oil & Gas Geology, 2020,41(5):1107-1118.
[16] 冯斌,黄晓波,何幼斌,等. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏,2023,36(3):84-95. FENG Bin,HUANG Xiaobo,HE Youbin,et al. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin[J]. Lithologic Reservoirs,2023,36(3):84-95.
[17] 李顺利,朱筱敏,刘强虎,等. 沙垒田凸起古近纪源-汇系统中有利储层评价与预测[J]. 地球科学,2017,42(11):1994-2009. LI Shunli,ZHU Xiaomin,LIU Qianghu,et al. Evaluation and prediction of favorable reservoirs in source-to-sink systems of the Palaeogene,Shaleitian uplift[J]. Earth Science,2017,42(11):1994-2009.
[18] 庞小军,王清斌,解婷,等. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏,2020,32(2):1-13. PANG Xiaojun,WANG Qingbin,XIE Ting,et al. Paleogene provenance and its control on high-quality reservoir in the northern margin of Huanghekou Sag[J]. Lithologic Reservoirs, 2020,32(2):1-13.
[19] 徐长贵,龚承林. 从层序地层走向源-汇系统的储层预测之路[J]. 石油与天然气地质,2023,44(3):521-538. XU Changgui,GONG Chenglin. Predictive stratigraphy:From sequence stratigraphy to source-to-sink system[J]. Oil & Gas Geology,2023,44(3):521-538.
[20] 谢玉洪. 珠江口盆地西部新近系海相低阻轻质油田的发现[J]. 中国工程科学,2011,13(5):16-22. XIE Yuhong. The new finding of Neogene marine low-resistivity light oil field in the western part of Pearl River Mouth Basin[J]. Strategic Study of CAE,2011,13(5):16-22.
[21] 许新明,陈胜红,王福国,等. 珠江口盆地恩平凹陷断层特征及其对新近系油气成藏的影响[J]. 现代地质,2014,28(3):543-550. XU Xinming,CHEN Shenghong,WANG Fuguo,et al. Structural features and its impacts on hydrcarbon accumulation of Neogene in Enping Sag,Pearl River Mouth Basin[J]. Geoscience, 2014,28(3):543-550.
[22] 李松峰,徐思煌,施和生,等. 珠江口盆地惠州凹陷古近系烃源岩特征及资源预测[J]. 地球科学-中国地质大学学报, 2013,38(1):112-120. LI Songfeng,XU Sihuang,SHI Hesheng,et al. Characteristics of Paleogene source rocks and prediction of petroleum resources in Huizhou Depression,Pearl River Mouth Basin[J]. Earth Science-Journal of China University of Geosciences,2013,38(1):112-120.
[23] 陈维涛,杜家元,施和生,等. 珠江口盆地惠西南地区复式油气成藏特征及富集规律[J]. 石油勘探与开发,2015,42(2):194-199. CHEN Weitao,DU Jiayuan,SHI Hesheng,et al. Compound hydrocarbon accumulation and enrichment in southwestern Huizhou area,Pearl River Mouth Basin,Southern China[J]. Petroleum Exploration and Development,2015,42(2):194-199.
[24] 罗东红,梁卫,李熙盛,等. 珠江口盆地陆丰13-1油田古近系恩平组突破及其重要意义[J]. 中国海上油气,2011,23(2):71-75. LUO Donghong,LIANG Wei,LI Xisheng,et al. A breakthrough at Paleogene Enping Formation and its important significance in Lufeng 13-1 oilfield,Pearl River Mouth Basin[J]. China Offshore Oil and Gas,2011,23(2):71-75.
[25] 贺勇,邱欣卫,雷永昌,等. 珠江口盆地陆丰13东洼新生代构造演化与油气成藏特征[J]. 岩性油气藏,2023,35(1):74-82. HE Yong,QIU Xinwei,LEI Yongchang,et al. Tectonic evolution and hydrocarbon accumulation characteristics of Cenozoic in eastern Lufeng 13 subsag,Pearl River Mouth Basin[J]. Lithologic Reservoirs,2023,35(1):74-82.
[26] 朱筱敏,黄捍东,代一丁,等. 珠江口盆地番禺4洼文昌组层序格架与沉积体系研究[J]. 岩性油气藏,2014,26(4):1-8. ZHU Xiaomin,HUANG Handong,DAI Yiding,et al. Study on depositional system and sequence framework of Wenchang Formation in Panyu 4 depression of the Pearl River Mouth Basin[J]. Lithologic Reservoirs,2014,26(4):1-8.
[27] 黄军立,张伟,刘力辉,等. 珠江口盆地番禺4洼古近系文昌组三元地震构形解释技术[J]. 岩性油气藏,2023,35(2):103-112. HUANG Junli,ZHANG Wei,LIU Lihui,et al. Ternary seismic configuration interpretation technology of Paleogene Wenchang Formation in Panyu 4 depression,Pearl River Mouth Basin[J]. Lithologic Reservoirs,2023,35(2):103-112.
[28] 徐长贵,高阳东,刘军,等. 南海东部富砂砾型大中型油气田发现与启示:以珠江口盆地惠州26洼古近系恩平组为例[J]. 石油勘探与开发,2024,51(1):14-27. XU Changgui,GAO Yangdong,LIU Jun,et al. Discovery and inspiration of large-and medium-sized glutenite-rich oil and gas fields in the eastern South China Sea:An example from Paleogene Enping Formation in Huizhou 26 subsag,Pearl River Mouth Basin[J]. Petroleum Exploration and Development, 2024,51(1):14-27.
[29] 彭光荣,王绪诚,陈维涛,等. 珠江口盆地惠州26洼东南缘古近系恩平组上段断-拗转换期源-汇系统及勘探意义[J]. 石油与天然气地质,2023,44(3):613-625. PENG Guangrong,WANG Xucheng,CHEN Weitao,et al. Sourceto-sink system during rifting-depression transition period and its exploration significance:A case study of the Upper Enping Formation at southeastern margin of Huizhou 26 sub-sag,Pearl River Mouth Basin[J]. Oil & Gas Geology,2023,44(3):613-625.
[30] 田立新. 珠江口盆地惠州凹陷转换体控沉-控储特性及其油气地质意义[J]. 地球科学,2021,46(11):4043-4056. TIAN Lixin. Sedimentary-reservoir characteristics under control of transfer model and implications for hydrocarbon exploration in Huizhou Depression,Pearl River Mouth Basin[J]. Earth Science,2021,46(11):4043-4056.
[31] 李一超,龚承林,邱欣卫,等. 珠江口盆地惠州凹陷古近纪源汇过程及其控储作用[J]. 地质论评,2024,70(4):1403-1418. LI Yichao,GONG Chenglin,QIU Xinwei,et al. Source-to-sink processes and their controls on the reservoirs of the Paleogene Huizhou Sag in Pearl River Mouth Basin[J]. Geological Review,2024,70(4):1403-1418.
[32] 林璐,蔡俊杰,刘杰,等. 构造转换带源汇系统控储作用:以珠江口盆地惠州凹陷惠州26转换带为例[J]. 西安石油大学学报(自然科学版),2024,39(3):21-33. LIN Lu,CAI Junjie,LIU Jie,et al. Control of source-sink system of transfer zone on reservoir quality:A case study from Huizhou 26 transfer zone in Huizhou Sag of Pearl River Mouth Basin[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2024,39(3):21-33.
[33] 雷超,任建业,张静. 南海构造变形分区及成盆过程[J]. 地球科学-中国地质大学学报,2015,40(4):744-762. LEI Chao,REN Jianye,ZHANG Jing. Tectonic province divisions in the South China Sea:implications for basin geodynamics[J]. Earth Science-Journal of China University of Geosciences,2015,40(4):744-762.
[34] WANG Pengcheng,LI Sanzhong,SUO Yanhui,et al. Structural and kinematic analysis of Cenozoic rift basins in South China Sea:A synthesis[J]. Earth-Science Reviews,2021,216:103522.
[35] 施和生,于水明,梅廉夫,等. 珠江口盆地惠州凹陷古近纪幕式裂陷特征[J]. 天然气工业,2009,29(1):35-37. SHI Hesheng,YU Shuiming,MEI Lianfu,et al. Features of Paleogene episodic rifting in Huizhou fault depression in the Pearl River Mouth Basin[J]. Natural Gas Industry,2009,29(1):35-37.
[36] 李康. 珠江口盆地惠州A/B构造带神狐组火山岩喷发-成山过程研究[D]. 长春:吉林大学,2023. LI Kang. Study on volcanic eruption-orogeny process of Shenhu Formation in Huizhou A/B structural belt,Pearl River Mouth Basin[D]. Changchun:Jilin University,2023.
[37] WANG Pengcheng,LI Sanzhong,SUO Yanhui,et al. Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea[J]. Geoscience Frontiers,2020,11(4):1231-1251.
[38] TANG Xu,YU Yixin,ZHANG Xiangtao,et al. Multiphase faults activation in the southwest Huizhou Sag,Pearl River Mouth Basin:Insights from 3D seismic data[J]. Marine and Petroleum Geology,2023,152:106257.
[39] 施和生,杜家元,梅廉夫,等. 珠江口盆地惠州运动及其意义[J]. 石油勘探与开发,2020,47(3):447-461. SHI Hesheng,DU Jiayuan,MEI Lianfu,et al. Huizhou movement and its significance in Pearl River Mouth Basin,China[J]. Petroleum Exploration and Development,2020,47(3):447-461.
[40] 鲁宝亮,王璞珺,张功成,等. 南海北部陆缘盆地基底结构及其油气勘探意义[J]. 石油学报,2011,32(4):580-587. LU Baoliang,WANG Pujun,ZHANG Gongcheng,et al. Basement structures of an epicontinental basin in the northern South China Sea and their significance in petroleum prospect[J]. Acta Petrolei Sinica,2011,32(4):580-587.
[41] 杜文波,朱荣伟,熊量莉,等. 珠江口盆地恩平凹陷恩平组物源体系分析及未来大洋钻探建议[J]. 地质学报,2022,96(8):2788-2799. DU Wenbo,ZHU Rongwei,XIONG Liangli,et al. Analysis of provenance systems of the Enping Formation in the Enping Sag,Pearl River Mouth Basin,and future ocean drilling proposals[J]. Acta Geologica Sinica,2022,96(8):2788-2799.
[42] 王维,叶加仁,杨香华,等. 珠江口盆地惠州凹陷古近纪多幕裂陷旋回的沉积物源响应[J]. 地球科学-中国地质大学学报,2015,40(6):61-71. WANG Wei,YE Jiaren,YANG Xianghua,et al. Sediment provenance and depositional response to multistage rifting,Paleogene,Huizhou Depression,Pearl River Mouth Basin[J]. Earth Science-Journal of China University of Geosciences,2015,40(6):61-71.
[43] 崔宇驰,曹立成,乔培军,等. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化[J]. 地球科学,2018,43(11):4169-4179. CUI Yuchi,CAO Licheng,QIAO Peijun,et al. Provenance evolution of Paleogene sequence(northern South China Sea)based on detrital zircon U-Pb dating analysis[J]. Earth Science, 2018,43(11):4169-4179.
[44] 阙晓铭,舒誉,汪旭东,等. 珠一坳陷古近纪物源特征及其沉积演化:来自碎屑锆石年龄的指示[J]. 地球科学,2024,49(7):2373-2387. QUE Xiaoming,SHU Yu,WANG Xudong,et al. Provenance characteristics and sedimentary evolution of Zhu I Depression in Paleogene:indications from detrital zircon ages[J]. Earth Science,2024,49(7):2373-2387.
[45] 周子强,朱红涛,刘强虎,等. 南海北部湾盆地协调-非协调供源样式与沉积交互作用耦合响应:以涠西南凹陷C洼为例[J]. 地球科学,2022,47(7):2521-2535. ZHOU Ziqiang,ZHU Hongtao,LIU Qianghu,et al. Coupled response of concordant-discordant input systems and depositional interactions within Beibuwan Basin,South China Sea:A case study from C Sag,Weixinan Depression[J]. Earth Science, 2022,47(7):2521-2535.
[46] 孙晓猛,张旭庆,张功成,等. 南海北部新生代盆地基底结构及构造属性[J]. 中国科学:地球科学,2014,44(6):1312- 1323. SUN Xiaomeng,ZHANG Xuqing,ZHANG Gongcheng,et al. The basement structure and structural properties of the Cenozoic basins in the northern South China Sea[J]. Scientia Sinica(Terrae), 2014,44(6):1312-1323.
[47] 汤家富,戴圣潜. 华南地区基底组成与构造演化及其对成岩成矿的控制[J]. 地学前缘,2016,23(4):109-128. TANG Jiafu,DAI Shengqian. Composition and tectonic evolution of precambrian basement in South China and their control in diagenesis and mineralization[J]. Earth Science Frontiers, 2016,23(4):109-128.
[48] LIU Chang,CLIFT P D,CARTER A,et al. Controls on modern erosion and the development of the Pearl River drainage in the Late Paleogene[J]. Marine Geology,2017,394:52-68.
[49] 曾智伟,朱红涛,杨香华,等. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化[J]. 地球科学,2017,42(11):1936-1954. ZENG Zhiwei,ZHU Hongtao,YANG Xianghua,et al. Provenance transformation and sedimentary evolution of Enping Formation,Baiyun Sag,Pearl River Mouth Basin[J]. Earth Science, 2017,42(11):1936-1954.
[1] 郑欣, 江东辉, 李昆, 庄建建, 张传运, 杨超, 袁忠鹏, 王嘉琪. 断裂-地貌-沉积坡折控砂模式及油气勘探意义——以东海盆地西湖凹陷保俶斜坡带北段为例[J]. 岩性油气藏, 2025, 37(4): 95-104.
[2] 陈家旭, 陈长伟, 刘国全, 邹磊落, 董晓伟, 刘川, 杨飞, 钟巍. 渤海湾盆地沧东凹陷深凹区古近系孔二段原油充注特征及成藏模式[J]. 岩性油气藏, 2025, 37(4): 136-146.
[3] 陈怀毅, 李龙, 白冰, 岳军培, 康荣, 张兴强. 渤海湾盆地莱州湾凹陷古近系沙四段走滑盐拱带特征及控藏作用[J]. 岩性油气藏, 2025, 37(3): 120-128.
[4] 李想, 付磊, 魏璞, 李俊飞, 徐港, 曹倩倩, 钟杨, 王振鹏. 沉积古地貌恢复及古地貌对沉积体系的控制作用——以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏, 2025, 37(2): 38-48.
[5] 朱文奇, 昝春景, 张莹, 王涛, 史朝文, 巴李霞, 陈亮, 季汉成. 渤中凹陷西次洼古近系东营组异常高孔带特征及成因机制[J]. 岩性油气藏, 2025, 37(2): 70-80.
[6] 胡鑫, 朱筱敏, 金绪铃, 黄成, 周越, 程长领, 修金磊, 任新成. 准噶尔盆地永进地区侏罗系齐古组浅水辫状河三角洲沉积特征[J]. 岩性油气藏, 2025, 37(2): 115-126.
[7] 薛辉, 叶大帅, 郭悦苗, 陈柯童, 吴健平, 许梦婷, 李雅雯. 渤海湾盆地保定凹陷清苑地区古近系东三段曲流河沉积特征及控储作用[J]. 岩性油气藏, 2025, 37(2): 139-152.
[8] 曲星宇. 东营凹陷梁东地区古近系沙三中亚段层序地层划分及石油地质意义[J]. 岩性油气藏, 2025, 37(2): 166-177.
[9] 胡心玲, 荣焕青, 杨伟, 张再昌, 漆智先. 东营凹陷八面河地区古近系沙四段湖相白云岩测井识别及应用[J]. 岩性油气藏, 2025, 37(1): 13-23.
[10] 刘志峰, 朱小二, 柳广弟, 王祥, 李泽坤, 吴璇, 梁禹洋. 渤中凹陷西洼古近系和新近系油气成藏差异对比[J]. 岩性油气藏, 2025, 37(1): 78-89.
[11] 陈肖, 缪云, 李伟, 谢明英, 施浩, 王伟峰. 海上边水驱砂岩油田合理油水井数比计算方法[J]. 岩性油气藏, 2025, 37(1): 194-200.
[12] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[13] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[14] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[15] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!