岩性油气藏 ›› 2024, Vol. 36 ›› Issue (3): 19–30.doi: 10.12108/yxyqc.20240302

• 地质勘探 • 上一篇    下一篇

渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分

方旭庆1, 钟骑2, 张建国2, 李军亮3, 孟涛3, 姜在兴2, 赵海波1   

  1. 1. 中国石化胜利油田分公司 油气勘探管理中心, 山东 东营 257001;
    2. 中国地质大学(北京)能源学院, 北京 100083;
    3. 中国石化胜利油田分公司 勘探开发研究院, 山东 东营 257015
  • 收稿日期:2023-01-20 修回日期:2023-03-10 出版日期:2024-05-01 发布日期:2024-04-30
  • 第一作者:方旭庆(1971—),男,博士,教授级高级工程师,主要从事油气勘探研究与管理工作。地址:(257001)山东省东营市东营区北二路胜建大厦。Email:fangxuqing.slyt@sinopec.com。
  • 通信作者: 张建国(1989—),男,博士,副教授。主要从事储层沉积学工作。Email:jianguozhangenergy@163.com。
  • 基金资助:
    国家自然科学基金项目“天文旋回约束下的湖相泥页岩沉积作用:以济阳坳陷始新统为例”(编号:41772090)资助。

Cyclostratigraphy analysis and stratigraphic division of lower Sha-3 member of Paleogene in Zhanhua Sag,Bohai Bay Basin

FANG Xuqing1, ZHONG Qi2, ZHANG Jianguo2, LI Junliang3, MENG Tao3, JIANG Zaixing2, ZHAO Haibo1   

  1. 1. Manage Center of Oil and Gas Exploration, Shengli Oilfield Company, Sinopec, Dongying 257001, Shandong, China;
    2. College of Energy Resources, China University of Geosciences(Beijing), Beijing 100083, China;
    3. Research Institute of Exploration and Development, Shengli Oilfield Company, Sinopec, Dongying 257015, Shandong, China
  • Received:2023-01-20 Revised:2023-03-10 Online:2024-05-01 Published:2024-04-30

摘要: 湖相细粒沉积多具有连续性,能记录和保存显著的天文旋回信号,是进行天文旋回分析的理想地层。通过对渤海湾盆地沾化凹陷重点井沙三下亚段自然伽马数据进行 MTM 频谱分析和 FFT 进化谐波分析,建立了“浮动”天文年代标尺,并在单井上进行了天文旋回地层划分及连井地层对比,为全区搭建了地层格架。研究结果表明:①渤海湾盆地沾化凹陷沙三下亚段记录了显著的天文旋回信号,匹配出最优沉积速率为 9.0×103 cm/Ma;由长偏心率、短偏心率、斜率和岁差周期产生的旋回地层厚度分别为 42.3 m,9.0 m,2.4~4.7 m 和1.3~1.9 m;②沙三下亚段比较稳定的记录了 6 个长偏心率旋回、25 个短偏心率旋回,可将短偏心率曲线作为地层划分依据来进行高精度地层对比。③运用天文旋回理论进行岩相发育规律、岩相空间配置关系的预测,可为湖盆沉积中心页岩油气地质“甜点”的精细勘探提供依据。

关键词: 湖相细粒沉积, 天文年代标尺, 天文旋回, 高精度地层对比, 长偏心率旋回, 短偏心率旋回, 沙三下亚段, 古近系, 沾化凹陷, 渤海湾盆地

Abstract: Lacustrine fine-grained sediments often have continuity and can record and preserve significant astronomical cycle signals, making them ideal strata for astronomical cycle analysis. MTM spectrum analysis and FFT evolutionary harmonic analysis were conducted for natural gamma data of the lower Sha-3 member of key wells in Zhanhua Sag, Bohai Bay Basin, a“floating”astronomical timescale was established, astronomical cyclostratigraphic division of single well and well-tie stratigraphic correlation were carried out, and the stratigraphic frame-work was established. The results show that:(1)Significant astronomical cycle signals were recorded in the lower Sha-3 member in Zhanhua Sag, and the optimal sedimentation rate was matched to be 9.0×103 cm/Ma. The cycle thicknesses corresponding to long eccentricity, short eccentricity, obliquity and precession cycle are 42.3 m, 9.0 m, 2.4-4.7 m and 1.3-1.9 m, respectively.(2)Six long eccentricity cycles and 25 short eccentricity cycles were stably recorded in the lower Sha-3 member, and the short eccentricity curves can be used as the stratigraphic division interface for high-precision stratigraphic correlation.(3)The application of astronomical cycle theory to predict the development patterns and spatial configuration relationships of lithofacies can provide a basis for the precise exploration of geological“sweet spots”of shale oil and gas in the sedimentary

Key words: lacustrine fine-grained sediment, astronomical timescale, astronomical cycle, high-precision stratigraphic correlation, long eccentricity cycle, short eccentricity cycle, lower Sha-3 member, Paleogene, Zhahua Sag, Bohai Bay Basin

中图分类号: 

  • TE121.3+4
[1] APLIN A C,MACQUAKER J S H. Mudstone diversity:Origin and implications for source,seal,and reservoir properties in petroleum systems[J]. AAPG Bulletin,2011,95(12):2031-2059.
[2] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039. JIANG Zaixing,LIANG Chao,WU Jing,et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica,2013,34(6):1031- 1039.
[3] 闫建平,言语,彭军,等.天文地层学与旋回地层学的关系、研究进展及其意义[J].岩性油气藏,2017,29(1):147-156. YAN Jianping,YAN Yu,PENG Jun,et al. The research progress, significance and relationship of astrostratigraphy with cyclostratigraphy[J]. Lithologic Reservoirs,2017,29(1):147-156.
[4] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报, 2012,33(2):173-187. ZOU Caineng,ZHU Rukai,WU Songtao,et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulation:Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica,2012,33(2):173-187.
[5] 赵贤正,周立宏,蒲秀刚,等.断陷湖盆湖相页岩油形成有利条件及富集特征:以渤海湾盆地沧东凹陷孔店组二段为例[J].石油学报,2019,40(9):1013-1029. ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al. Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin:A case study of member 2 of Kongdian Formation in Cangdong sag,Bohai Bay Basin[J]. Acta Petrolei Sinica,2019,40(9):1013-1029.
[6] 闫建平,梁强,耿斌,等.湖相泥页岩地球化学参数测井计算方法及应用:以沾化凹陷渤南洼陷沙三下亚段为例[J].岩性油气藏,2017,29(4):108-116. YAN Jianping,LIANG Qiang,GENG Bin,et al. Log calculation method of geochemical parameters of lacustrine shale and its application:A case of lower Es3 in Bonan subsag,Zhanhua Sag[J]. Lithologic Reservoirs,2017,29(4):108-116.
[7] 张建国,姜在兴,刘立安,等. 渤海湾盆地沾化凹陷沙河街组三段下亚段细粒沉积岩岩相特征与沉积演化[J]. 石油学报, 2021,42(3):293-306. ZHANG Jianguo,JIANG Zaixing,LIU Li'an,et al. Lithofacies depositional evolution of fine-grained sedimentary rocks in the lower submember of the member 3 of Shahejie Formation in Zhanhua Sag,Bohai Bay Basin[J]. Acta Petrolei Sinica,2021, 42(3):293-306.
[8] BOULILA S,GALBRUN B,HURET E,et al. Astronomical calibration of the Toarcian Stage:Implications for sequence stratigraphy and duration of the early Toarcian OAE[J]. Earth and Planetary Science Letters,2014,386(1):98-111.
[9] SHI Juye,JIN Zhijun,LIU Quanyou,et al. Depositional process and astronomical forcing model of lacustrine fine-grained sedimentary rocks:A case study of the early Paleogene in the Dongying Sag,Bohai Bay Basin[J]. Marine and Petroleum Geology,2020,113:1-10.
[10] 石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质,2019, 40(6):1205-1214. SHI Juye,JIN Zhijun,LIU Quanyou,et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology,2019,40(6):1205-1214.
[11] MILANKOVITCH M M. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem[M]. Académie royale serbe:Éditions speciales,1941:133.
[12] BERGER A. Milankovitch theory and climate[J]. Reviews of Geophysics,1988,26(4):624-657.
[13] WEEDON G P. Time-series analysis and cyclostratigraphy[M]. Cambridge:Cambridge University Press,2003:77-78.
[14] STRASSER A H,HECKEL P H. Cyclostratigraphy concepts, definitions,and applications[J]. Newsletters on Stratigraphy,2006, 42(2):75-114.
[15] 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘,2014,21(2):48-66. HUANG Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014,21(2):48-66.
[16] 金忠慧,姜在兴,张建国,等. 东营凹陷沙四上亚段旋回地层学研究:以樊页1 井为例[J]. 科学技术与工程,2017,17(1):21-28. JIN Zhonghui,JIANG Zaixing,ZHANG Jianguo,et al. Cyclostratigraphy research on the upper 4th member of the Shahejie Formation in Dongying Sag:A case study of FY1[J]. Science Technology and Engineering,2017,17(1):21-28.
[17] ZHANG Jianguo,JIANG Zaixing,LIANG Chao,et al. Astronomical forcing of meter-scale organic-rich mudstone-limestone cyclicity in the Eocene Dongying Sag,China:Implications for shale reservoir exploration[J]. AAPG Bulletin,2022,106(8):1557-1579.
[18] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学——中国地质大学学报,2011,36(3):409-428. WU Huaichun,ZHANG Shihong,FENG Qinglai,et al. Theoretical basis,research advancement and prospects of cyclostratigraphy[J]. Earth Science-Journal of China University of Geosciences, 2011,36(3):409-428.
[19] FANG Qiang,WU Huaichun,HINNOV L A,et al. A record of astronomically forced climate change in a late Ordovician(Sandbian) deep marine sequence,Ordos Basin,North China[J]. Sedimentary Geology,2016,341:163-174.
[20] KIETZMANN D A,PALMA R M,LLANOS M P I. Cyclostratigraphy of an orbitally-driven Tithonian-Valanginian carbonate ramp succession,southern Mendoza,Argentina:Implications for the Jurassic-Cretaceous boundary in the Neuquén Basin[J]. Sedimentary Geology,2015,315:29-46.
[21] ABELS H A,ABDUL A H,CALVO J P,et al. Shallow lacustrine carbonate microfacies document orbitally paced lake-level history in the Miocene Teruel Basin(North-East Spain)[J]. Sedimentology,2009,56(2):399-419.
[22] ABELS H A,AZIZ H A,VENTRA D,et al. Orbital climate forcing in mudflat to marginal lacustrine deposits in the Miocene Teruel Basin(Northeast Spain)[J]. Journal of Sedimentary Research,2009,79(11):831-847.
[23] OCAKOĞLU F,AÇIKALIN S,YILMAZ I Ö,et al. Evidence of orbital forcing in lake-level fluctuations in the Middle Eocene oil shale-bearing lacustrine successions in the Mudurnu-Göynük Basin,NW Anatolia(Turkey)[J]. Journal of Asian Earth Sciences, 2012,56:54-71.
[24] WU Huaichun,ZHANG Shihong,JIANG Ganqing,et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin,northeastern China and its implication for long-period behavior of the solar system[J]. Palaeo-geography,Palaeoclimatology,Palaeoecology,2013,385:55-70.
[25] ZHAO Ke,DU Xuebin,LU Yongchao,et al. Are light-dark coupled laminae in lacustrine shale seasonally controlled? A case study using astronomical tuning from 42.2 to 45.4 Ma in the Dongying Depression,Bohai Bay Basin,eastern China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,528:35-49.
[26] YANG Yongtai,MIALL A D. Migration and stratigraphic fill of an underfilled foreland basin:Middle-Late Cenomanian Belle Fourche Formation in southern Alberta,Canada[J]. Sedimentary Geology,2010,227(1/4):51-64.
[27] 赵笑笑,闫建平,王敏,等.沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法[J]. 岩性油气藏,2022,34(1):118- 129. ZHAO Xiaoxiao,YAN Jianping,WANG Min,et al. Logging intercalation method of lacustrine interlayers of Shahejie Formation in Zhanhua Sag[J]. Lithologic Reservoirs,2022,34(1):118-129.
[28] 周立宏,蒲秀刚,邓远,等.细粒沉积岩研究中几个值得关注的问题[J].岩性油气藏,2016,28(1):6-15. ZHOU Lihong,PU Xiugang,DENG Yuan,et al. Several issues in studies on fine-grained sedimentary rocks[J]. Lithologic Reservoirs,2016,28(1):6-15.
[29] PROKOPH A,VILLENEUVE M,AGTERBERG F P,et al. Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian-Turonian boundary[J]. Geology,2001,29(6):523-526.
[30] 贾屾,姜在兴,张文昭. 沾化凹陷页岩油储层特征及控制因素[J]. 海洋地质前沿,2018,34(12):29-38. JIA Shen,JIANG Zaixing,ZHANG Wenzhao. Characteristics of the shale oil reservoir in Zhanhua sag and its controlling factors[J]. Marine Geology Frontiers,2018,34(12):29-38.
[31] 刘华,袁飞飞,蒋有录,等.沾化凹陷古近系超压特征及其成因机制[J]. 中国石油大学学报(自然科学版),2021,45(3):23-32. LIU Hua,YUAN Feifei,JIANG Youlu,et al. Genesis and characteristics of Paleogene overpressure in Zhanhua Depression, Jiyang sub-basin[J]. Journal of China University of Petroleum (Edition of Natural Science),2021,45(3):23-32.
[32] 李超,朱筱敏,朱世发,等. 沾化凹陷罗家地区沙三下段泥页岩储层特征[J]. 沉积学报,2015,33(4):795-808. LI Chao,ZHU Xiaomin,ZHU Shifa,et al. Shale reservoirs characteristics of the lower 3th member of Shahejie Formation,Luojia area,Zhanhua Sag[J]. Acta Sedimentologica Sinica,2015, 33(4):795-808.
[33] LI Mingsong,HINNOV L,KUMP L. Acycle:Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences,2019,127:12-22.
[34] CLEVELAND W S. Robust locally weighted regression and smoothing scatterplots[J]. Journal of the American Statistical Association,1979,74(368):829-836.
[35] LASKAR J,FIENGA A,GASTINEAU M. La2010:A new orbital solution for the long-term motion of the earth[J]. Astronomy & Astrophysics,2011,532:77-89.
[36] FIENGA A,LASKAR J,MORLEY T. INPOP08,a 4-D planetary ephemeris:From asteroid and time-scale computations to ESA mars express and venus express contributions[J]. Astronomy & Astrophysics,2009,507:1675-1686.
[37] LIU Zhanhong,HUANG Chunju,ALGEO T J,et al. High-resolution astrochronological record for the Paleocene-Oligocene(66-23 Ma) from the rapidly subsiding Bohai Bay Basin,northeastern China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2018,510:78-92.
[38] 张若琳,金思丁. 渤海湾盆地沾化凹陷罗69井沙三下亚段旋回地层学研究[J]. 中南大学学报(自然科学版),2021,52(5):1516-1531. ZHANG Ruolin,JIN Siding. Cyclostratigraphy research on lower member 3 of Shahejie Formation in well Luo 69 in Zhanhua Sag Bohai Bay Basin[J]. Journal of Central South University (Science and Technology),2021,52(5):1516-1531.
[39] 吴怀春,张世红,黄清华. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘,2008,15(4):159- 169. WU Huaichun,ZHANG Shihong,HUANG Qinghua. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of northeast China[J]. Earth Science Frontiers,2008,15(4):159- 169.
[40] MEYERS S R,SAGEMAN B B,HINNOV L A. Integrated quantitative stratigraphy of the cenomanian-turonian bridge creek limestone member using evolutive harmonic analysis and stratigraphic modeling[J]. Journal of Sedimentary Research,2001, 71(4):628-644.
[41] MEYERS S R. Seeding red in cyclic stratigraphy:Spectral noise estimation for astrochronology[J]. Paleoceanography,2012,27(3):PA3228.
[42] MA Chao,MEYERS S R,SAGEMAN B B,et al. Testing the astronomical time scale for oceanic anoxic event 2,and its extension into Cenomanian strata of the Western Interior Basin (USA)[J]. Geological Society of America Bulletin,2014,126(7/8):974-989.
[43] LASKAR J,ROBUTELP,JOUTEL F,et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics,2004,428(1):261-285.
[44] 张建国,姜在兴,刘鹏,等. 陆相超细粒页岩油储层沉积机制与地质评价[J].石油学报,2022,43(2):234-249. ZHANG Jianguo,JIANG Zaixing,LIU Peng,et al. Deposition mechanism and geological assessment of continental ultrafinegrained shale oil reservoir[J]. Acta Petrolei Sinica,2022,43(2):234-249.
[45] 张汶,吕世聪,赵大林,等.渤海湾盆地西南部古近系滩坝沉积特征及主控因素[J].岩性油气藏,2021,33(3):85-94. ZHANG Wen,LYU Shicong,ZHAO Dalin,et al. Sedimentary characteristics and main controlling factors of Paleogene beach bar in southwest Bohai Bay Basin[J]. Lithologic Reservoirs, 2021,33(3):85-94.
[46] 罗群,吴安彬,王井伶,等.中国北方页岩气成因类型、成气模式与勘探方向[J].岩性油气藏,2019,31(1):1-11. LUO Qun,WU Anbin,WANG Jingling,et al. Genetic type, generation model,and exploration direction of shale gas in northern China[J]. Lithologic Reservoirs,2019,31(1):1-11.
[1] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[2] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[3] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[4] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[5] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[6] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[7] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[8] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[9] 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42.
[10] 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61.
[11] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
[12] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60.
[13] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39.
[14] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[15] 杨润泽, 赵贤正, 刘海涛, 李宏军, 赵长毅, 蒲秀刚. 渤海湾盆地黄骅坳陷古生界源内和源下油气成藏特征及有利区预测[J]. 岩性油气藏, 2023, 35(3): 110-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .