岩性油气藏 ›› 2023, Vol. 35 ›› Issue (3): 110–125.doi: 10.12108/yxyqc.20230310

• 地质勘探 • 上一篇    下一篇

渤海湾盆地黄骅坳陷古生界源内和源下油气成藏特征及有利区预测

杨润泽1, 赵贤正2, 刘海涛1, 李宏军2, 赵长毅1, 蒲秀刚2   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国石油大港油田公司, 天津 300280
  • 收稿日期:2022-07-19 修回日期:2022-08-06 出版日期:2023-05-01 发布日期:2023-04-25
  • 第一作者:杨润泽(1992—),男,博士,主要从事油气成藏方面的研究工作。地址:(100083)北京市海淀区学院路20号中国石油勘探开发研究院。Email:youngrunze@163.com。
  • 基金资助:
    中石油科技部前瞻性项目 “潜山内幕及复杂断块油气藏勘探评价技术研究”(编号: 2021DJ0701) 和中石油勘探生产分公司前期项目 “渤海湾盆地新层系新领域研究与有利区带评价”(编号: kt2021-06-02) 联合资助。

Hydrocarbon accumulation characteristics and favorable zones prediction in and under source of Paleozoic in Huanghua Depression,Bohai Bay Basin

YANG Runze1, ZHAO Xianzheng2, LIU Haitao1, LI Hongjun2, ZHAO Changyi1, PU Xiugang2   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. PetroChina Dagang Oilfield Company, Tianjin 300280, China
  • Received:2022-07-19 Revised:2022-08-06 Online:2023-05-01 Published:2023-04-25

摘要: 煤系烃源岩是渤海湾盆地黄骅坳陷古生界含油气系统的主要烃源岩,源内和源下油气聚集机制和油气成藏过程不清。基于测井、录井、地震资料,结合烃源岩地球化学分析、储层岩心测试、包裹体测试、物理模拟实验等多种手段,探讨了渤海湾盆地黄骅坳陷古生界源内及源下油气聚集机制和成藏过程。研究结果表明:①黄骅坳陷古生界源内储层可有效聚集油气,紧邻的煤系地层烃源岩可优先对其供烃,稳定的构造背景使源内油气藏得到良好的保存。②研究区源下储层油气成藏的2个必要条件为:上部终止于煤系内部且下部连接奥陶系储层的断裂系统,且低角度断裂的油气输导效率更高;源储间存在大于10 MPa的压差,可为源下储层的油气成藏提供良好的动力。③研究区源内及源下油气藏具备早晚2期成藏、中期破坏的特征。中白垩世,低熟的煤系原油大量充注于储层中;白垩纪末期,地层的强烈抬升使古油藏遭受破坏或调整;新生代,随着烃源岩进一步成熟并生、排烃,形成了大量煤型气和轻质油油气藏。④研究区烃源岩有效充注范围内,储层相对优质、构造相对稳定的区域为源内勘探有利区,印支期逆冲断裂发育、受后期伸展作用改造较弱的区域为源下勘探有利区。

关键词: 煤系烃源岩, 源内成藏, 源下成藏, 源储压差, 油气聚集机制, 古生界, 黄骅坳陷, 渤海湾盆地

Abstract: Coal measure source rocks are the main source rocks of Paleozoic petroleum system in Huanghua Depression,Bohai Bay Basin. Hydrocarbon accumulation mechanism and accumulation process of the in-source and under-source reservoirs are not clear. Based on logging,well log and seismic data,combined with geochemical tests of source rocks,reservoir analysis and testing,inclusion tests,physical simulation experiment,the hydrocarbon accumulation mechanism and accumulation process in and under source of Paleozoic in Huanghua Depression were discussed. The results show that: (1)There is hydrocarbon accumulation in the in-source reservoirs of Paleozoic in Huanghua Depression,the in-source reservoirs are close to the source rocks,and the coal measure oil and gas can be charged preferentially. The stable structural background can make the in-source reservoirs well preserved.(2)Two necessary conditions are met for hydrocarbon accumulation in the Lower Ordovician,the fracture with upper end ending in coal measure and lower end connecting with Ordovician reservoirs, and the low angle fractures have higher transport efficiency. The source-reservoir pressure difference over 10 MPa is a good driving force for hydrocarbon accumulation.(3)The in-source and under-source reservoirs are characterized by accumulation in early and late stage and destroyed in middle stage. In Middle Cretaceous,low-mature crude oil was charged in large quantities. Strong tectonic uplift in Late Cretaceous caused the destruction or adjustment of the ancient oil reservoirs. In Cenozoic,with the further maturity of hydrocarbon source rocks,generation and expulsion of hydrocarbons,a large amount of coal gas and light oil accumulated and formed reservoirs.(4)The relatively stable areas with high-quality reservoirs developed within the range of hydrocarbon generation in the study area are favorable areas for in-source oil and gas exploration,while the areas where the Indosinian thrust faults developed and were weakly modified by later extension are favorable exploration areas for under-source oil and gas exploration.

Key words: coal measure source rock, accumulation in the source, accumulation under the source, source-reservoir pressure difference, hydrocarbon accumulation mechanism, Paleozoic, Huanghua Depression, Bohai Bay Basin

中图分类号: 

  • TE122.2
[1] 赵贤正,蒲秀刚,姜文亚,等.黄骅坳陷古生界含油气系统勘探突破及其意义[J].石油勘探与开发, 2019, 46(4):621-632. ZHAO Xianzheng, PU Xiugang, JIANG Wenya, et al. An exploration breakthrough in Paleozoic petroleum system of Huanghua Depression in Dagang Oilfield and its significance[J]. Petroleum Exploration and Development, 2019, 46(4):621-632.
[2] 金凤鸣,王鑫,李宏军,等.渤海湾盆地黄骅坳陷乌马营潜山内幕原生油气藏形成特征[J].石油勘探与开发, 2019, 46(3):521-529. JIN Fengming, WANG Xin, LI Hongjun, et al. Formation of the primary petroleum reservoir in Wumaying inner buried-hill of Huanghua Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(3):521-529.
[3] 王鑫,周立宏,金凤鸣,等.黄骅坳陷古生界潜山储层沥青成因判识[J].地质论评, 2021, 67(增刊1):123-124. WANG Xin, ZHOU Lihong, JIN Fengming, et al. Genesis of bitumen in Paleozoic buried hill reservoirs in Huanghua Depression[J]. Geological Review, 2021, 67(Suppl 1):123-124.
[4] 周立宏,王鑫,付立新,等.黄骅坳陷乌马营潜山二叠系砂岩凝析气藏的发现及其地质意义[J].中国石油勘探, 2019, 24(4):431-438. ZHOU Lihong, WANG Xin, FU Lixin, et al. Discovery and geological significance of the Permian sandstone condensate gas reservoir in Wumaying buried hill, Huanghua Depression[J]. China Petroleum Exploration, 2019, 24(4):431-438.
[5] 赵贤正,李宏军,付立新,等.渤海湾盆地黄骅坳陷古生界煤成凝析气藏特征、主控因素与发育模式[J].石油学报, 2021, 42(12):1592-1604. ZHAO Xianzheng, LI Hongjun, FU Lixin, et al. Characteristics, main controlling factors and development mode for Paleozoic coal-formed condensate gas reservoirs in Huanghua Depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2021, 42(12):1592-1604.
[6] 何海清,梁世君,郭绪杰,等.吐哈盆地洼陷区中下侏罗统岩性油气藏风险勘探新发现及勘探前景[J].天然气地球科学, 2022, 33(7):1025-1035. HE Haiqing, LIANG Shijun, GUO Xujie, et al. New discoveries and exploration prospects of Middle and Lower Jurassic lithologic reservoirs in depression area of Turpan Hami Basin[J]. Natural Gas Geoscience, 2022, 33(7):1025-1035.
[7] 牛成民,杜晓峰,王启明,等.渤海海域新生界大型岩性油气藏形成条件及勘探方向[J].岩性油气藏, 2022, 34(3):1-14. NIU Chengmin, DU Xiaofeng, WANG Qiming, et al. Formation conditions and exploration direction of large-scale lithologic reservoirs of Cenozoic in Bohai Sea[J]. Lithologic Reservoirs, 2022, 34(3):1-14.
[8] 杨润泽,赵贤正,李宏军,等.黄骅坳陷上古生界烃源灶排烃特征及供烃模式[J].中国矿业大学学报, 2020, 49(2):367-380. YANG Runze, ZHAO Xianzheng, LI Hongjun, et al. Hydrocarbon expulsion characteristics and hydrocarbon supply model of the Upper Paleozoic source kitchen in Huanghua Depression[J]. Journal of China University of Mining&Technology, 2020, 49(2):367-380.
[9] 徐樟有,宋丽,吴欣松,等.川中地区上三叠统须家河组典型气藏解剖与天然气成藏主控因素分析[J].岩性油气藏, 2009, 21(2):7-11. XU Zhangyou, SONG Li, WU Xinsong, et al. Typical gas reservoirs and main controlling factors of reservoir-forming of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2009, 21(2):7-11.
[10] 马玉杰,卓勤功,杨宪彰,等.库车坳陷克拉苏构造带油气动态成藏过程及其勘探启示[J].石油实验地质, 2013, 35(3):249-254. MA Yujie, ZHUO Qingong, YANG Xianzhang, et al. Petroleum dynamic accumulation process and its implications in Kelasu structural belt, Kuqa Depression, Tarim Basin[J]. Petroleum Geology&Experiment, 2013, 35(3):249-254.
[11] 史长林,纪友亮,廖前进,等.黄骅坳陷奥陶系碳酸盐岩潜山成藏模式[J].油气地质与采收率, 2009, 16(6):29-31. SHI Changlin, JI Youiang, LIAO Qianjin, et al. Accumulation patterns of Ordovician carbonate buried hill in Huanghua Depression[J]. Petroleum Geology&Recovery Efficiency, 2009, 16(6):29-31.
[12] 付广,张桓.油气倒灌运移形式分布区预测方法及其应用[J].地质论评, 2017, 63(3):822-830. FU Guang, ZHANG Huan. Forecasting method and application of oil and gas flowing backward migration patterns in range of distribution[J]. Geological Review, 2017, 63(3):822-830.
[13] 李祖兵,崔俊峰,宋舜尧,等.黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J].岩性油气藏, 2021, 33(2):81-92. LI Zubing, CUI Junfeng, SONG Shunyao, et al. Characteristics and genetic mechanism of Mesozoic clastic reservoirs in Beidagang buried hill, Huanghua Depression[J]. Lithologic Reservoirs, 2021, 33(2):81-92.
[14] 吴永平,杨池银,王喜双.渤海湾盆地北部奥陶系潜山油气藏成藏组合及勘探技术[J].石油勘探与开发, 2000, 27(5):1-4. WU Yongping, YANG Chiyin, WANG Xishuang. Ordovician buried hill reservoir plays and exploration technique of northern Bohai Bay Basin[J]. Petroleum Exploration and Development, 2000, 27(5):1-4.
[15] 于福生,漆家福,王春英.华北东部印支期构造变形研究[J].中国矿业大学学报, 2002, 31(4):402-406. YU Fusheng, QI Jiafu, WANG Chunying. Tectonic deformation of Indosinian Period in eastern part of North China[J]. Journal of China University of Mining&Technology, 2002, 31(4):402-406.
[16] 李三忠,索艳慧,周立宏,等.华北克拉通内部的拉分盆地:渤海湾盆地黄骅坳陷结构构造与演化[J].吉林大学学报(地球科学版), 2011, 41(5):1362-1379. LI Sanzhong, SUO Yanhui, ZHOU Lihong, et al. Pull-apart basins within the north China carton:Structural pattern and evolution of Huanghua Depression in Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5):1362-1379.
[17] 李洪颜.华北克拉通原型盆地及岩浆活动时空演化对克拉通破坏的制约[J].中国科学:地球科学, 2013, 43(9):1396-1409. LI Hongyan. Destruction of North China Craton:Insights from temporal and spatial evolution of the proto-basins and magmatism[J]. Science China:Earth Sciences, 2013, 43(9):1396-1409.
[18] 张飞鹏,吴智平,李伟,等.黄骅坳陷印支-燕山期构造特征及其演化过程[J].中国矿业大学学报, 2019, 48(4):842-857. ZHANG Feipeng, WU Zhiping, LI Wei, et al. Structural characteristics and its tectonic evolution of Huanghua Depression during the Indosinian-Yanshanian[J]. Journal of China University of Mining&Technology, 2019, 48(4):842-857.
[19] 付立新,楼达,李宏军,等.印支-燕山运动对大港探区古潜山形成的控制作用[J].石油学报, 2016, 37(增刊2):19-30. FU Lixin, LOU Da, LI Hongjun, et al. Control effect of IndosinianYanshan movement on the formation of buried hill in Dagang exploration area[J]. Acta Petrolei Sinica, 2016, 37(Suppl 2):19-30.
[20] 吕大炜,李增学,王东东,等.华北晚古生代陆表海盆地海侵事件微观沉积特征及成煤探讨[J].沉积学报, 2015, 33(4):633-640. LYU Dawei, LI Zengxue, WANG Dongdong, et al. Discussion on micro-characteristics of transgressive event deposition and its coal-forming mechanism in the Late Paleozoic epicontinental sea basin of North China[J]. Acta Sedimentologica Sinica, 2015, 33(4):633-640.
[21] 黄第藩.成烃理论的发展:(Ⅱ)煤成油及其初次运移模式[J].地球科学进展, 1996, 11(5):432-438. HUANG Difan. Advances in hydrocarbon generation theory:(Ⅱ) Oils from coal and its primary migration model[J]. Advance in Earth Sciences, 1996, 11(5):433-438.
[22] 陈建平,赵长毅,何忠华.煤系有机质生烃潜力评价标准探讨[J].石油勘探与开发, 1997, 24(1):1-5. CHEN Jianping, ZHAO Changyi, HE Zhonghua. Discussion on evaluation criteria for hydrocarbon generation potential of organic matter in coal measures[J]. Petroleum Exploration and Development, 1997, 24(1):1-5.
[23] 赵长毅,程克明.吐哈盆地煤及显微组分生烃模式[J].科学通报, 1997, 42(19):2102-2105. ZHAO Changyi, CHENG Keming. Generated hydrocarbon model of coal and its maceral in Tuha Basin[J]. Chinese Science Bulletin, 1997, 42(19):2102-2105.
[24] 刘海涛,甘华军,李宏军,等.渤海湾盆地北部上古生界油气藏地质特征及勘探潜力[J].煤炭学报, 2022, 47(5):2041-2056. LIU Haitao, GAN Huajun, LI Hongjun, et al. Geological characteristics and exploration potential of Upper Paleozoic oil and gas reservoirs in northern Bohai Bay Basin[J]. Journal of China Coal Society, 2022, 47(5):2041-2056.
[25] YANG Runze, ZHAO Xianzheng, LIU Haitao, et al. Hydrocarbon charging and accumulation in the Permian reservoir of Wangguantun buried hill in Huanghua Depression, Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 199(28):108297.
[26] 侯中帅,周立宏,陈世悦,等.大港探区上古生界储层类型与控制因素[J].中国矿业大学学报,2018,47(5):1107-1123. HOU Zhongshuai, ZHOU Lihong, CHEN Shiyue, et al. Reservoir types and controlling factors of Upper Paleozoic in Dagang exploration area[J]. Journal of China University of Mining&Technology, 2018, 47(5):1107-1123.
[27] 李宏军,付立新,张津宁,等.黄骅拗陷奥陶系岩溶储层发育特征与控制因素[J].西北大学学报(自然科学版), 2019, 49(3):417-427. LI Hongjun, FU Lixin, ZHANG Jinning, et al. Characteristics and karstification of the Ordovician carbonate reservoir in the Huanghua Depression[J]. Journal of Northwest University (Natural Science Edition), 2019, 49(3):417-427.
[28] 史忠生,庞文珠,陈彬滔,等.南苏丹Melut盆地下组合近源白垩系成藏模式与勘探潜力[J].岩性油气藏, 2020, 32(5):23-33. SHI Zhongsheng, PANG Wenzhu, CHEN Bintao, et al. Hydrocarbon accumulation models and exploration potential of nearsource Cretaceous in the lower assemblage of Melut Basin, South Sudan[J]. Lithologic Reservoirs, 2020, 32(5):23-33.
[29] 吕雪莹,蒋有录,刘景东,等.渤海湾盆地黄骅坳陷潜山油气成藏差异性及主控因素[J].中国矿业大学学报, 2021, 50(5):835-846. LYU Xueying, JIANG Youlu, LIU Jingdong, et al. Differential hydrocarbon accumulation of buried hills and its main controlling factors in the Huanghua sub-basin, Bohai Bay Basin[J]. Journal of China University of Mining&Technology, 2021, 50(5):835-846.
[30] 程鑫,周立宏,操应长,等.黄骅坳陷大港探区下古生界碳酸盐岩潜山差异演化及优质储层成因[J].石油与天然气地质, 2021, 42(3):673-689. CHENG Xin, ZHOU Lihong, CAO Yingchang, et al. Differential evolution and origin of high-quality reservoirs in the Lower Paleozoic carbonate buried hills in Dagang prospecting area, Huanghua Depression[J]. Oil&Gas Geology, 2021, 42(3):673-689.
[31] 李荣西,金奎励,廖永胜.有机包裹体显微傅里叶红外光谱和荧光光谱测定及其意义[J].地球化学, 1998, 27(3):244-250. LI Rongxi, JIN Kuili, LIAO Yongsheng. Analysis of organic inclusions using micro-ft.ir and fluorescence microscopy and its significance[J]. Geochimica, 1998, 27(3):244-250.
[32] 张鼐,田作基,冷莹莹,等.烃和烃类包裹体的拉曼特征[J].中国科学D辑:地球科学, 2007, 37(7):900-907. ZHANG Nai, TIAN Zuoji, LENG Yingying, et al.Raman characteristics of hydrocarbon and hydrocarbon inclusions[J]. Science in China Series D:Earth Sciences, 2007, 37(7):900-907.
[33] 蒋有录,刘学嘉,赵贤正,等.根据储层沥青和流体包裹体综合判识油气成藏期:以黄骅坳陷北大港古生界潜山为例[J].地球科学, 2020, 45(3):980-988. JIANG Youlu, LIU Xuejia, ZHAO Xianzheng, et al. Comprehensive identification of oil and gas accumulation period by fluid inclusion technique and reservoir bitumen charateristics:A case study of the Paleozoic buried hill in Beidagang, Huanghua Depression[J]. Earth Science, 2020, 45(3):980-988.
[34] 丛琳,赵天琦,刘洋,等.油气垂向和侧向倒灌运移条件及其聚集规律的差异性[J].中国矿业大学学报, 2016, 45(5):951-957. CONG Lin, ZHAO Tianqi, LIU Yang, et al. Conditions of oilgas downward migration in vertical and lateral and their differences in accumulation laws[J]. Journal of China University of Mining&Technology, 2016, 45(5):951-957.
[35] 吴青鹏,杨占龙,姚军,等.吐哈盆地北部山前带中下侏罗统水西沟群成藏条件及勘探方向[J].岩性油气藏, 2021, 33(6):1-11. WU Qingpeng, YANG Zhanlong, YAO Jun, et al. Reservoir forming conditions and exploration prospect of Middle-Lower Jurassic Shuixigou group in northern piedmond belt of TurpanHami Basin[J]. Lithologic Reservoirs, 2021, 33(6):1-11.
[36] 胡朝元."源控论"适用范围量化分析[J].天然气工业, 2005, 25(10):1-7. HU Chaoyuan. Research on the appliance extent of "source control theory" by semi-quantitative statistics characteristics of oil and gas migration distance[J]. Natural Gas Industry, 2005, 25(10):1-7.
[37] 付广,吴伟.乌尔逊-贝尔凹陷油气成藏模式及其主控因素[J].岩性油气藏, 2015, 27(1):14-20. FU Guang, WU Wei. Oil-gas accumulation models and their main controlling factors in Wuerxun-Beier Depression[J]. Lithologic Reservoirs, 2015, 27(1):14-20.
[38] 戴金星,夏新宇,洪峰,等.中国煤成大中型气田形成的主要控制因素[J].科学通报, 1999, 44(22):2455-2464. DAI Jinxing, XIA Xinyu, HONG Feng, et al. Major factors controlling the forming of large and middle coal-formed gas fields in China[J]. Chinese Science Bulletin, 1999, 44(22):2455-2464.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[3] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[4] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[5] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
[6] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[7] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[8] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
[9] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60.
[10] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[11] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[12] 余海波. 东濮凹陷构造特征及古生界有利勘探区带评价[J]. 岩性油气藏, 2022, 34(6): 72-79.
[13] 魏新, 唐建云, 宋红霞, 陈玉宝. 鄂尔多斯盆地甘泉地区上古生界烃源岩地球化学特征及生烃潜力[J]. 岩性油气藏, 2022, 34(6): 92-100.
[14] 何玉, 周星, 李少轩, 丁洪波. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏, 2022, 34(3): 60-69.
[15] 程丹华, 焦霞蓉, 王建伟, 庄东志, 王政军, 江山. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏, 2022, 34(3): 70-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .