岩性油气藏 ›› 2022, Vol. 34 ›› Issue (3): 60–69.doi: 10.12108/yxyqc.20220306

• 地质勘探 • 上一篇    下一篇

渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征

何玉, 周星, 李少轩, 丁洪波   

  1. 中海石油 (中国) 有限公司天津分公司, 天津 300452
  • 收稿日期:2021-07-29 修回日期:2021-09-05 出版日期:2022-05-01 发布日期:2022-05-12
  • 作者简介:何玉(1987-),男,硕士,工程师,主要从事钻前孔隙压力预测研究工作。地址:(300452)天津市滨海新区海川路2121号渤海石油管理局B座。Email:512288213@qq.com。
  • 基金资助:
    中海石油(中国)有限公司“七年行动计划”科技重大专项“渤海油田上产4000万吨新领域勘探关键技术”(编号:CNOOC-KJ135ZDXM36TJ08TJ)资助

Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin

HE Yu, ZHOU Xing, LI Shaoxuan, DING Hongbo   

  1. Tianjin Branch of CNOOC Ltd., Tianjin 300452, China
  • Received:2021-07-29 Revised:2021-09-05 Online:2022-05-01 Published:2022-05-12

摘要: 通过渤海湾盆地渤中凹陷古近系的测压、测井数据建立全井段地层压力曲线,划分其垂向超压带,并根据垂直有效应力-速度交会图、烃源岩发育层段及镜质体反射率分析了超压成因和类型,完善了超压成因的识别方法。研究结果表明:①渤中凹陷古近系东二下段至沙三段均发育异常超压,超压成因主要为欠压实、有机质生烃、流体传导,随着地层年代变老,超压成因由欠压实向有机质生烃、流体传导等非欠压实成因变化。②欠压实超压多发生在厚泥岩段,声波速度变化小,岩石密度较小,垂直有效应力稳定;有机质生烃超压层段的声波速度低于正常压实地层的速度,但随深度增加略有增大,垂直有效应力较小;流体传导超压一般发生于不具备自源型超压生成条件的流体封存箱,声波速度及岩石密度均为正常压实趋势,实测压力纵向上随深度线性增加,表现为同一压力系统。

关键词: 欠压实超压, 有机质生烃超压, 流体传导超压, 地层超压成因, 测井响应特征, 古近系, 渤中凹陷, 渤海湾盆地

Abstract: Based on pressure measurement and logging data of Paleogene in Bozhong Sag,Bohai Bay Basin, the formation pressure curves of the whole well section were established,and the vertical overpressure zones were divided. The genesis and types of overpressure were analyzed by the consideration of vertical effective stress-velocity cross plot,source rock development and vitrinite reflectance,and the method for identifying overpressure was improved. The results show that: (1)Abnormal overpressure developed in the lower second member of Dongying Formation and the third member of Shahejie Formation of Paleogene in Bozhong Sag. The genesis of overpressure is mainly undercompaction,hydrocarbon generation of organic matter and fluid conduction, with the aging of the strata,the overpressure genesis changes from undercompaction to non-undercompaction such as hydrocarbon generation of organic matter and fluid conduction.(2)The overpressure caused by undercompaction generally corresponds to thick mudstone section,with little change of acoustic velocity,low rock density and stable vertical effective stress. The overpressure caused by hydrocarbon generation of organic matter corresponds to the strata with acoustic velocity being lower than that of normal compacted strata,but it increases slightly with the increase of depth,and the vertical effective stress is low. The overpressure caused by fluid conduction generally occurs in overpressure fluid compartments without the conditions for self-source overpressure generation,the acoustic velocity and rock density show normal compaction trend,and the measured pressure increases linearly with depth in the longitudinal direction, showing the same pressure system.

Key words: undercompaction overpressure, overpressure caused by hydrocarbon generation of organic matter, fluid conduction overpressure, genesis of formation overpressure, logging response characteristics, Paleogene, Bozhong Sag, Bohai Bay Basin

中图分类号: 

  • TE122
[1] 马启富,陈斯忠,张启明,等.超压盆地与油气分布[M].北京:地质出版社, 2000:1-24. MA Qifu, CHEN Sizhong, ZHANG Qiming, et al. Oil and gas distribution in overpressured basins[M]. Beijing:Geological Publishing House, 2000:1-24.
[2] 朱伟林,米立军.中国海域含油气盆地图集[M].北京:石油工业出版社, 2010:24-25. ZHU Weilin, MI Lijun. Atlas of oil and gas basin, China sea[M]. Beijing:Petroleum Industry Press, 2010:24-25.
[3] 沈章洪.渤海油田古近系超压成因分类及分布特征[J].中国海上油气, 2016, 28(3):31-36. SHEN Zhanghong. Genetic classification and distribution characteristics of overpressure in the Paleogene of Bohai oilfields[J]. China Offshore Oil and Gas, 2016, 28(3):31-36.
[4] 石良,金振奎,闫伟,等.异常高压对储集层压实和胶结作用的影响:以渤海湾盆地渤中凹陷西北次凹为例[J].石油勘探与开发, 2015, 42(3):310-318. SHI Liang, JIN Zhenkui, YAN Wei, et al. Influence of overpressure on reservoir compaction and cementation:A case from northwestern sub sag, Bozhong Sag,Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2015, 42(3):310-318.
[5] 郝芳,蔡东升,邹华耀,等.渤中坳陷超压-构造活动联控型流体流动与油气快速成藏[J].地球科学——中国地质大学学报, 2004, 29(5):518-524. HAO Fang, CAI Dongsheng, ZOU Huayao, et al. Overpressuretectonic activity controlled fluid flow and rapid petroleum accumulation in Bozhong Depression,Bohai Bay Basin[J]. Earth Science-Journal of China University of Geosciences, 2004, 29(5):518-524.
[6] PETER V R, RICHARD H, PETER T. The origin of overpressure in the Carnarvon Basin, western Australia:Implications for pore pressure prediction[J]. Petroleum Geoscience,2004,10(3):247-257.
[7] TANG Longxiang, LU Jungang, YANG Mingyi, et al. Identification of overpressures resulting from undercompaction and hydrocarbon generation in shale-dominated settings using well-log data[J]. Interpretation, 2022, 2:141-148.
[8] WEBSTER M. Overpressures in the Taranaki Basin:Distribution, causes and implications for exploration[J]. AAPG Bulletin, 2011, 95(3):339-370.
[9] LUO Xiaorong, WANG Zhaoming, LIU Luojun. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China[J]. AAPG Bulletin, 2007, 95(10):1123-1139.
[10] VERNIK L,DE NEWTON P V. Pore pressure prediction in organic shales[J].The Leading Edge, 2022, 3:172-175.
[11] 杜晓峰,王清斌,庞小军,等.渤中凹陷石南陡坡带东三段源汇体系定量表征[J].岩性油气藏, 2018, 30(5):1-10. DU Xiaofeng, WANG Qingbin, PANG Xiaojun, et al. Quantitative characterization of source-sink system of Ed3 in Shinan steep slope zone,Bozhong Depression[J]. Lithologic Reservoirs, 2018, 30(5):1-10.
[12] 王洪亮,邓宏文.渤海湾盆地第三系层序地层特征与大中型气田分布[J].中国海上油气(地质), 2000, 14(2):100-103. WANG Hongliang, DENG Hongwen. Tertiary sequence stratigraphy and major gas fields in Bohai Bay Basin[J]. China Offshore Oil and Gas (Geology), 2000, 14(2):100-103.
[13] 杜栩,郑洪印,焦秀琼.异常压力与油气分布[J].地学前缘, 1995, 2(4):137-148. DU Xu, ZHENG Hongyin, JIAO Xiuqiong. Abnormal pressure and hydrocarbon accumulation[J]. Earth Science Frontiers, 1995, 2(4):137-148.
[14] 罗晓容,杨计海,王振峰.盆地内渗透性地层超压形成机制及钻前压力预测[J].地质论评, 2000, 46(1):22-30. LUO Xiaorong, YANG Jihai, WANG Zhenfeng. The overpressuring mechanisms in aquifers and pressure prediction in Basins[J]. Geological Review, 2000, 46(1):22-30.
[15] 郭小文,何生,宋国奇,等.东营凹陷生油增压成因证据[J].地球科学——中国地质大学学报, 2011, 36(6):1085-1094. GUO Xiaowen, HE Sheng, SONG Guoqi, et al. Evidences of overpressure caused by oil generation in Dongying Depression[J]. Earth Science-Journal of China University of Geosciences, 2011, 36(6):1085-1094.
[16] 刘晓峰.超压传递:概念和方式[J].石油实验地质, 2002, 24(6):533-536. LIU Xiaofeng. Overpressure transference:Concept and ways[J]. Petroleum Geology&Experiment, 2002, 24(6):533-536.
[17] 刘晓峰,解习农.储层超压流体系统的成因机制[J].地质科技情报, 2003, 22(3):55-60. LIU Xiaofeng, XIE Xinong. Review on formation mechanism of the reservoir overpressure fluid system[J]. Geological Science and Technology Information, 2003, 22(3):55-60.
[18] TINGAY M R P. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei[J]. AAPG Bulletin, 2009, 93(1):51-74.
[19] RAMDHAN A M, GOULTY N R. Overpressure-generating mechanisms in the Peciko Field, Lower Kutai Basin, Indonesia[J]. Petroleum Geoscience, 2010, 16(4):367-376.
[20] 王志宏,郝翠果,李建明,等.川西前陆盆地超压分布及成因机制[J].岩性油气藏, 2019, 31(6):36-43. WANG Zhihong, HAO Cuiguo, LI Jianming, et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin[J]. Lithologic Reservoirs, 2019, 31(6):36-43.
[21] TERZAGHI K. Die Berechnung der Durchlässigkeit des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen[J]. Akademie der Wissenschaften in Wien, 1923, 132(3/4):125-138.
[22] BOWERS G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[R]. Dallas:Proceedings of The IADC/SPE Drilling Conference, 1994.
[23] BOWERS G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2):174-177.
[24] 薛永安,王飞龙,汤国民,等.渤海海域页岩油气地质条件与勘探前景[J].石油与天然气地质, 2020, 41(4):696-709. XUE Yong'an, WANG Feilong, TANG Guomin, et al. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil&Gas Geology, 2020, 41(4):696-709.
[25] 谢玉洪,张功成,沈朴,等.渤海湾盆地渤中凹陷大气田形成条件与勘探方向[J].石油学报, 2018, 39(11):1199-1210. XIE Yuhong, ZHANG Gongcheng, SHEN Pu, et al. Formation conditions and exploration direction of large gas field in Bozhong Sag of Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(11):1199-1210.
[26] 姜雪,刘丽芳,孙和风,等.气候与构造控制下湖相优质烃源岩的差异分布:以渤中凹陷为例[J].石油学报, 2019, 40(2):165-175. JIANG Xue, LIU Lifang, SUN Hefeng, et al. Differential distribution of high quality lacustrine source rocks controlled by climate and tectonics:A case study from Bozhong Sag[J]. Acta Petrolei Sinica, 2019, 40(2):165-175.
[27] 庞小军,代黎明,王清斌,等.渤中凹陷西北缘东三段低渗透储层特征及控制因素[J].岩性油气藏, 2017, 29(5):76-88. PANG Xiaojun, DAI Liming, WANG Qingbin, et al. Characteristics and controlling factors of low permeability reservoirs of the third member of Dongying Formation in northwestern margin of Bozhong Sag[J]. Lithologic Reservoirs, 2017, 29(5):76-88.
[28] 吴磊,徐怀民,季汉成.渤海湾盆地渤中凹陷古近系沉积体系演化及物源分析[J].海洋地质与第四纪地质, 2006, 26(1):81-87. WU Lei, XU Huaimin, JI Hancheng. Evolution of sedimentary system and analysis of sedimentary source in Paleogene of Bozhong Sag, Bohai Bay[J]. Marine Geology&Quaternary Geology, 2006, 26(1):81-87.
[29] 杜雨佳.渤中凹陷古近系烃源岩生烃潜力评价[D].青岛:中国石油大学(华东), 2015. DU Yujia. Hydrocarbon generation potential of Paleogene source rocks in Bozhong Depression[D]. Qingdao:China University of Petroleum (East China), 2015.
[30] 刘晓峰,解习农,张成.渤海湾盆地渤中坳陷储层超压特征与成因机制[J].地球科学——中国地质大学学报, 2008, 33(3):337-341. LIU Xiaofeng, XIE Xinong, ZHANG Cheng. Characteristics and generation of the reservoir overpressure in Bozhong Depression, Bohai Bay Basin[J]. Earth Science-Journal of China University of Geosciences, 2008, 33(3):337-341.
[31] 蒋有录,王鑫,于倩倩,等.渤海湾盆地含油气凹陷压力场特征及与油气富集关系[J].石油学报, 2016, 37(11):1361-1369. JIANG Youlu, WANG Xin, YU Qianqian, et al. Pressure field characteristics of petroliferous depressions and its relationship with hydrocarbon enrichment in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2016, 37(11):1361-1369.
[32] 樊建华,李瑞娟,赵清平.基于地震的地层压力预测在渤中凹陷西南地区的应用[J].工程地球物理学报, 2015, 12(5):571-575. FAN Jianhua, LI Ruijuan, ZHAO Qingping. The application of seismic formation pressure prediction to southwest area of Bozhong Depression[J]. Chinese Journal of Engineering Geophysics, 2015, 12(5):571-575.
[33] 王德英,于娅,张藜,等.渤海海域石臼坨凸起大型岩性油气藏成藏关键要素[J].岩性油气藏, 2020, 32(1):1-10. WANG Deying, YU Ya, ZHANG Li, et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift, Bohai Sea[J]. Lithologic Reservoirs, 2020, 32(1):1-10.
[1] 程丹华, 焦霞蓉, 王建伟, 庄东志, 王政军, 江山. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏, 2022, 34(3): 70-81.
[2] 郭美洁, 时保宏, 董雄英, 李昊东, 何川. 黄骅坳陷埕海斜坡古近系油气成藏条件及主控因素[J]. 岩性油气藏, 2022, 34(3): 82-92.
[3] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
[4] 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141.
[5] 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[6] 赵思思, 李建明, 柳金城, 李积永, 崔俊. 柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造[J]. 岩性油气藏, 2022, 34(2): 66-74.
[7] 缪欢, 王延斌, 何川, 李建红, 张伟, 张雨建, 龚训. 渤海湾盆地埕北断阶带断裂发育特征及其控藏作用[J]. 岩性油气藏, 2022, 34(2): 105-115.
[8] 阳宏, 刘成林, 王飞龙, 汤国民, 李国雄, 曾晓祥, 吴育平. 渤中凹陷东营组古沉积环境及烃源岩发育模式[J]. 岩性油气藏, 2021, 33(6): 81-92.
[9] 张汶, 吕世聪, 赵大林, 贾海松, 蔡越钎. 渤海湾盆地西南部古近系滩坝沉积特征及主控因素[J]. 岩性油气藏, 2021, 33(3): 85-94.
[10] 叶涛, 王清斌, 代黎明, 陈容涛, 崔普媛. 台地相碳酸盐岩层序划分新方法——以渤中凹陷奥陶系为例[J]. 岩性油气藏, 2021, 33(3): 95-103.
[11] 黄华, 袁娟梅, 彭伟, 张亮, 文辉. 江汉盆地古近系潜江组盐湖沉积特征与成藏模式[J]. 岩性油气藏, 2021, 33(2): 9-16.
[12] 黄芸, 杨德相, 李玉帮, 胡明毅, 季汉成, 樊杰, 张晓芳, 王元杰. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 70-80.
[13] 向巧维, 李小平, 丁琳, 杜家元. 珠江口盆地珠一坳陷古近系高自然伽马砂岩形成机制及油气地质意义[J]. 岩性油气藏, 2021, 33(2): 93-103.
[14] 胡贺伟, 李慧勇, 许鹏, 陶莉, 华晓莉. 断裂密集带油气差异富集主控因素探讨——以歧口凹陷歧南断阶带为例[J]. 岩性油气藏, 2020, 32(5): 34-45.
[15] 庞小军, 王清斌, 解婷, 赵梦, 冯冲. 黄河口凹陷北缘古近系物源及其对优质储层的控制[J]. 岩性油气藏, 2020, 32(2): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!