岩性油气藏 ›› 2024, Vol. 36 ›› Issue (2): 160–169.doi: 10.12108/yxyqc.20240215

• 石油工程与油气田开发 • 上一篇    下一篇

基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例

王亚, 刘宗宾, 路研, 王永平, 刘超   

  1. 中海石油(中国)有限公司天津分公司, 天津 300452
  • 收稿日期:2023-02-05 修回日期:2023-08-23 出版日期:2024-03-01 发布日期:2024-03-06
  • 作者简介:王亚(1994—),男,博士,工程师,主要从事海上油气田开发地质研究工作。地址:(300452)天津市滨海新区海川路2121号海洋石油大厦B座。Email:wangya5@cnooc.com.cn。
  • 基金资助:
    国家科技重大专项“低渗-致密油藏描述新方法与开发模式”(编号:2017ZX05009001)资助。

Flow unit division based on SSOM and its production application: A case study of sublacustrine turbidity channels of middle Es3 in F oilfield,Bohai Bay Basin

WANG Ya, LIU Zongbin, LU Yan, WANG Yongping, LIU Chao   

  1. Tianjin Branch of CNOOC China Limited, Tianjin 300452, China
  • Received:2023-02-05 Revised:2023-08-23 Online:2024-03-01 Published:2024-03-06

摘要: 在储层构型级次划分的基础上,归纳总结了渤海湾盆地F油田古近系沙三中亚段湖底浊积水道各级渗流屏障与构型界面的关系,并采用监督模式下的自组织映射神经网络算法开展流动单元定量评价,明确了构型模式控制下的流动单元分布规律。研究结果表明:①渤海湾盆地F油田沙三中亚段储层可划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ等4类流动单元。②基于SSOM算法的流动单元识别结果表现出较高的预测准确率,其中,256组训练样本的整体回判准确率为82.81%,110组测试样本的识别准确率为80.91%,能够满足地质油藏研究的需求。③垂向上,不同类型的单一水道内部发育的流动单元类型不同,造成流动单元垂向分布的差异性。Ⅰ类、Ⅱ类优质流动单元发育在浊积水道体系演化的中期,主要分布在二类单一水道;Ⅲ类、Ⅳ类流动单元发育在浊积水道体系演化的早期和晚期,其中,Ⅲ类流动单元分布广泛,在一类、二类、三类单一水道均有分布,Ⅳ类流动单元发育在一类、三类单一水道。侧向上,受水道体系不同沉积演化阶段的影响,流动单元的侧向分割方式不同。流动单元与非渗透层接触样式发育在浊积水道体系早期沉积旋回中,接触界面明显,属于一类水道沉积砂体;流动单元间的相互接触样式则发育在水道体系中晚期沉积旋回中,属于二类、三类水道沉积砂体。④平面上,受单一水道侧向迁移和垂向加积作用的影响,复合水道内部流动单元平面展布差异性明显。Ⅲ类流动单元在单砂体内部广泛发育,井间连续性好,在浊积主水道、浊积水道及水道漫溢沉积砂体处均有发育;渗流能力较好的Ⅰ类、Ⅱ类流动单元分布局限、连续性差,仅在浊积水道主流线方向及主水道砂体处有分布,呈不连续的点状或带状分布;Ⅳ类流动单元呈环带状分布在Ⅲ类流动单元的外缘,在浊积水道漫溢沉积砂体处发育。

关键词: SSOM算法, 浊积水道, 储层构型, 流动单元, 自组织映射神经网络, 监督模式, 沙三中亚段, 古近系, 渤海湾盆地

Abstract: Based on the classification of reservoir architecture,the relationship between seepage barriers and architecture interfaces of the sublacustrine turbidity channels of the middle third member of Paleogene Shahejie Formation(Es3)in F oilfield of Bohai Bay Basin was summarized,a supervised self-organizing map neural network algorithm was used to quantitatively evaluate flow units,and the distribution of flow units under the control of architecture models was clarified. The results show that:(1)The reservoirs of middle Es3 in F oilfield of Bohai Bay Basin can be divided into four types of flow units,namely type Ⅰ,Ⅱ,Ⅲ and Ⅳ.(2)The flow unit recognition results based on SSOM algorithm show high prediction accuracy,with an overall accuracy of 82.81% for 256 training samples and 80.91% for 110 testing samples,which can meet the needs of geological reservoir research. (3)Vertically,the flow units developed in different types of single channels may vary greatly,resulting in difference of vertical distribution of flow units. The favorable typeⅠand Ⅱ flow units are developed in the middle stage of turbidity channel system evolution,mainly distributed in the category Ⅱ single channels. Type Ⅲ and Ⅳ flow units are developed in the early and late stages of turbidity channel system evolution. Among them,type Ⅲ flow units are widely distributed in category Ⅰ,Ⅱ and Ⅲ single channels,while type Ⅳ flow units are mainly developed in categoryⅠand Ⅲ single channels. Laterally,influenced by the sedimentary evolution stages of channels systems,the lateral division of flow units is different. The contact pattern between the flow units and the nonpermeable layers develops in the early sedimentary cycle of the turbidity channel system,with obvious contact interfaces,which belongs to category Ⅰ channel sand bodies. The contact pattern between the flow units develops in the middle and late sedimentary cycles of the channel system,which belongs to category Ⅱ and Ⅲ channel sand bodies. (4)Horizontally,due to the lateral migration and vertical accretion of single channels,the distribution of flow units in the composite channel was significantly different. The type Ⅲ flow units are developed widely in the single sand body with good continuity between wells,and they are developed in the main turbidity channels,turbidity channels and overflowing sand bodies. The distribution of typeⅠand Ⅱ flow units with good seepage capacity is limited with poor continuity,and they are distributed only in the direction of the main stream line of turbidity channels and the sand bodies of the main channels,showing discontinuous point or ribbon distribution. The Type Ⅳ flow units are distributed in a ring band along the outer edge of type Ⅲ flow units and developed in the area where the turbidity channels overflowed the sand bodies.

Key words: SSOM algorithm, turbidity channel, reservoir architecture, flow unit, self-organizing map neural network, supervised mode, middle Es3, Paleogene, Bohai Bay Basin

中图分类号: 

  • TE345
[1] 满晓,胡德胜,吴洁,等. 北部湾盆地涠西南凹陷始新统流一段湖底扇发育特征及成藏模式[J]. 岩性油气藏,2023,35(4):137-144. MAN Xiao,HU Desheng,WU Jie,et al. Development characteristics and accumulation model of sublacustrine fans of the first member of Eocene Liushagang Formation in Weixinan Sag,Beibuwan Basin[J]. Lithologic Reservoirs,2023,35(4):137-144.
[2] WYNN R B,CRONIN B T,PEAKALL J. Sinuous deep-water channels:Genesis,geometry and architecture[J]. Marine and Petroleum Geology,2007,24(6/7/8/9):341-387.
[3] 张文彪,段太忠,刘志强,等. 深水浊积水道沉积构型模式及沉积演化:以西非M油田为例[J]. 地球科学,2017,42(2):273-285.ZHANG Wenbiao,DUAN Taizhong,LIU Zhiqiang,et al. Architecture model and sedimentary evolution of deepwater turbidity channel:A case study of M oilfield in West Africa[J]. Earth Science,2017,42(2):273-285.
[4] MUTTI E,NORMARK W R. Comparing examples of modern and ancient turbidite systems:Problems and concepts[J]. Marine Clastic Sedimentology,1987,1:1-38.
[5] 林煜,吴胜和,王星,等. 深水浊积水道体系构型模式研究:以西非尼日尔三角洲盆地某深水研究区为例[J]. 地质论评, 2013,59(3):510-520. LIN Yu,WU Shenghe,WANG Xing,et al. Research on architecture model of deep water turbidity channel system:A case study of a deepwater research area in Niger Delta Basin,West Africa[J]. Geological Review,2013,59(3):510-520.
[6] 李志鹏,杨勇,侯加根,等. 渤南五区浊积水道砂体储层构型研究[J]. 中国石油大学学报(自然科学版),2015,39(5):36-42. LI Zhipeng,YANG Yong,HOU Jiagen,et al. Reservoir architecture of turbidity channels in the 5 th area of Bonan Oilfield[J]. Journal of China University of Petroleum(Edition of Natural Science),2015,39(5):36-42.
[7] HEARN C L,EBANKS W J,TYE R S. Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming[J]. Journal of Petroleum Technology,1984,36(8):1335-1344.
[8] 袁丙龙,张辉,叶青,等. 基于三角洲复合砂体构型的流动单元划分及剩余油分布模式[J]. 沉积学报,2021,39(5):1253-1263. YUAN Binglong,ZHANG Hui,YE Qing,et al. Flow-unit classification based on compound sand-body architecture of delta and distribution pattern of remaining oil[J]. Acta Sedimentologica Sinica,2021,39(5):1253-1263.
[9] NOORUDDIN H A,HOSSAIN M E. Modified Kozeny-Carmen correlation for enhanced hydraulic flow unit characterization[J]. Journal of Petroleum Science and Engineering,2012,80(1):107-115.
[10] 周游,李治平,景成,等. 基于"岩石物理相-流动单元"测井响应定量评价特低渗透油藏优质储层:以延长油田东部油区长6油层组为例[J]. 岩性油气藏,2017,29(1):116-123. ZHOU You,LI Zhiping,JING Cheng,et al. Quantitative evaluation of favorable reservoir in ultra-low permeable reservoir based on "petrophysical facies-flow unit" log response:A case study of Chang 6 oil reservoir set in Yanchang Oilfield[J]. Lithologic Reservoirs,2017,29(1):116-123.
[11] HATAMPOUR A,SCHFFI M,JAFARI S. Hydraulic flow units,depositional facies and pore type of Kangan and Dalan formations,south pars gas field,Iran[J]. Journal of Nature Gas Science Engineering. 2015,23:171-183.
[12] SHAN L,CAO L,GUO B. Identification of flow units using the joint of WT and LSSVM based on FZI in a heterogeneous carbonate reservoir[J]. Journal of Petroleum Science and Engineering,2018,161:219-230.
[13] 陈哲,陆军,赵耀辉,等. 绥靖油田杨19区延91油藏流动单元划分合理性研究[J]. 石油与天然气地质,2015,36(3):497-503. CHEN Zhe,LU Jun,ZHAO Yaohui,et al. Research on flow unit division rationality of Yan 91 oil reservoir in Yang 19 block of Suijing oilfield,Ordos Basin[J]. Oil & Gas Geology,2015,36(3):497-503.
[14] GHIASI-FREEZ J,KADKHODAIE-ILKHCHI A,ZIAII M. Improving the accuracy of flow units prediction through two committee machine models:An example from the south pars gas field,Persian gulf basin,Iran[J]. Computers & Geosciences, 2012,46:10-23.
[15] 任梦怡,胡光义,范廷恩,等. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022,34(6):141-151. REN Mengyi,HU Guangyi,FAN Tingen,et al. Composite sand body architecture and controlling factors of the lower Minghuazhen Formation of Neogene in northern Qinhuangdao 32-6 Oilfield[J]. Lithologic Reservoirs,2022,34(6):141-151.
[16] 张皓宇,李茂,康永梅,等. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏,2021,33(6):177-188. ZHANG Haoyu,LI Mao,KANG Yongmei,et al. Reservoir architecture and fine characterization of remaining oil of Chang 3 reservoir in Zhenbei Oilfield,Ordos Basin[J]. Lithologic Reservoirs,2021,33(6):177-188.
[17] 王石,万琼华,陈玉琨,等. 基于辫状河储层构型的流动单元划分及其分布规律[J]. 油气地质与采收率,2015,22(5):47-51. WANG Shi,WAN Qionghua,CHEN Yukun,et al. Flow units division and their distribution law based on braided river reservoir architecture[J]. Petroleum Geology and Recovery Efficiency, 2015,22(5):47-51.
[18] KOHONEN T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics,1982,43(1):59-69.
[19] 任培罡,夏存银,李媛,等. 自组织神经网络在测井储层评价中的应用[J]. 地质科技情报,2010,29(3):114-118. REN Peigang,XIA Cunyin,LI Yuan,et al. Application of self-organizing neural network to logging reservoir evaluation[J]. Geological Science and Technology Information,2010,29(3):114-118.
[20] 仲鸿儒,成育红,林孟雄,等. 基于SOM和模糊识别的复杂碳酸盐岩岩性识别[J]. 岩性油气藏,2019,31(5):84-91. ZHONG Hongru,CHENG Yuhong,LIN Mengxiong,et al. Lithology identification of complex carbonate based on SOM and fuzzy recognition[J]. Lithologic Reservoirs,2019,31(5):84-91.
[21] 王亚,杨少春,路研,等. 基于测井岩石物理相识别的低渗透储层评价方法:以东营凹陷高青地区蒙阴组上段为例[J]. 中国矿业大学学报,2018,47(6):1264-1275. WANG Ya,YANG Shaochun,LU Yan,et al. Evaluation method of low permeability reservoirs based on logging petrophysical facies identification:A case study of the upper member of Mengyin formation in Gaoqing area,Dongying depression[J]. Journal of China University of Mining & Technology,2018,47(6):1264-1275.
[22] 许建华,蔡瑞. 有监督SOM神经网络在油气预测中的应用[J]. 石油物探,1998,37(1):71-76. XU Jianhua,CAI Rui. Application of the supervised SOM neural network to oil and gas prediction[J]. Geophysical Prospecting for Petroleum,1998,37(1):71-76.
[23] WANG Ya,LU Yan. Diagenetic facies prediction using a LDAassisted SSOM method for the Eocene beach-bar sandstones of Dongying Depression,East China[J]. Journal of Petroleum Science and Engineering,2021,196:108040.
[24] 宁正福,赵洋,程林松. 基于因子分析的流动单元研究[J]. 中国石油大学学报(自然科学版),2012,36(4):107-111. NING Zhengfu,ZHAO Yang,CHENG Linsong. Study on flow units based on factor analysis[J]. Journal of China University of Petroleum(Edition of Natural Science),2012,36(4):107-111.
[25] 毛雪莲,朱继田,姚哲,等. 琼东南盆地深水区中央峡谷砂体成因与展布规律[J]. 岩性油气藏,2017,29(6):60-68. MAO Xuelian,ZHU Jitian,YAO Zhe,et al. Sandbody genesis and distribution regularity of central canyon in deepwater area of Qiongdongnan Basin[J]. Lithologic Reservoirs,2017,29(6):60-68.
[1] 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42.
[2] 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61.
[3] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
[4] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60.
[5] 尹艳树, 丁文刚, 安小平, 徐振华. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49.
[6] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39.
[7] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[8] 杨润泽, 赵贤正, 刘海涛, 李宏军, 赵长毅, 蒲秀刚. 渤海湾盆地黄骅坳陷古生界源内和源下油气成藏特征及有利区预测[J]. 岩性油气藏, 2023, 35(3): 110-125.
[9] 郑彬, 董翱, 张源智, 张毅, 苏珊, 张士超, 樊津津, 骆垠山. 济阳坳陷渤南洼陷古近系沙河街组流体压力建场过程及其石油地质意义[J]. 岩性油气藏, 2023, 35(2): 59-67.
[10] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[11] 完颜泽, 龙国徽, 杨巍, 柴京超, 马新民, 唐丽, 赵健, 李海鹏. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102.
[12] 黄军立, 张伟, 刘力辉, 蔡国富, 曾有良, 孟庆友, 刘浩. 珠江口盆地番禺4洼古近系文昌组三元地震构形解释技术[J]. 岩性油气藏, 2023, 35(2): 103-112.
[13] 应凯莹, 蔡长娥, 梁煜琦, 陈鸿, 尚文亮, 苏桂娇. 伊通盆地岔路河断陷古近系断层的垂向封闭性及其控藏作用[J]. 岩性油气藏, 2023, 35(2): 136-143.
[14] 邓美玲, 王宁, 李新琦, 陈容涛, 刘岩, 徐耀辉. 渤海莱州湾凹陷中部古近系沙三段烃源岩地球化学特征及沉积环境[J]. 岩性油气藏, 2023, 35(1): 49-62.
[15] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!