岩性油气藏 ›› 2024, Vol. 36 ›› Issue (3): 180–188.doi: 10.12108/yxyqc.20240317

• 石油工程与油气田开发 • 上一篇    

断块油藏注采耦合提高采收率机理及矿场实践

刘仁静1, 陆文明2   

  1. 1. 中国石化国际石油勘探开发公司, 北京 100029;
    2. 中国石化石油勘探开发研究院, 北京 102206
  • 收稿日期:2022-10-04 修回日期:2023-05-28 出版日期:2024-05-01 发布日期:2024-04-30
  • 第一作者:刘仁静(1982—),男,博士,高级工程师,主要从事油气田开发相关工作。地址:(102206)北京市昌平区百沙路 197 号。Email:rjliu.sipc@sinopec.com。
  • 通信作者: 陆文明(1983—),男,硕士研究生,高级工程师,主要从事油气田开发相关研究工作。Email:luwm.syky@sinopec.com。
  • 基金资助:
    国家科技重大专项“断块油田特高含水期提高水驱采收率技术”(编号:2016ZX05011-002)资助。

Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs

LIU Renjing1, LU Wenming2   

  1. 1. Sinopec International Exploration and Production Corporation, Beijing 100029, China;
    2. Sinopec Petroleum Exploration and Production Research Institute, Beijing 102206, China
  • Received:2022-10-04 Revised:2023-05-28 Online:2024-05-01 Published:2024-04-30

摘要: 针对渤海湾盆地济阳坳陷东营凹陷古近系断块油藏水驱开发后期流线固定导致注入水无效循环的问题,基于渗流力学和油藏工程原理,通过室内物模模拟和油藏数值模拟,提出了“细分开发层系、轮注轮采”的注采耦合开发调整技术,并验证了该技术可提高采收率的原理。研究结果表明:①利用注采耦合开发技术建立的“注入期间的高渗通道与低渗通道吸水量比模型”和“采油期间主流线和非主流线产油量比模型”均揭示了“改变压力场促进渗流场调整,实现均匀注入和均匀采出,扩大水驱波及系数和增加驱油效率”的注采耦合渗流力学机制。②注采耦合技术可以实现“扩大波及系数、增加驱油效率”,起到类似“调剖”的作用,高含水期通过此项技术可将低渗透岩心的分流率由 1.0% 提到 18.6%,模型驱替更均衡;经过 2 个轮次的注采耦合调整,高、低渗透岩心的原油采收率分别提高了10.3% 和16.1%。③研究区 D 断块古近系沙河街组沙二段 Es236含油小层油藏注采耦合开发数值模拟结果显示,主流线和非主流线驱替更均匀,两者压力梯度极差由 2.3 下降至 1.4。经过 3 个轮次注采耦合开发调整,沙二段 3—6 砂层组油藏平均综合含水率下降了 3.2%,累计增油 1 760 t,提高原油采收率 2.1%,增油降水效果显著。

关键词: 注采耦合, 物理模拟, 数值模拟, 极差, 渗流场, 水驱采收率, 断块油藏, 沙河街组, 东营凹陷, 渤海湾盆地

Abstract: Aiming at the problem of ineffective circulation of injected water caused by fixed streamline in the late stage of water drive development of Paleogene fault block reservoirs in Dongying Sag, Jiyang Depression, Bohai Bay Basin, based on seepage mechanics and reservoir engineering principles, the injection-production coupling development adjustment technology of“subdividing development layers, rotating injection and production”was proposed by means of indoor physical model simulation and reservoir numerical simulation, and the mechanism of enhancing oil recovery by this technology was clarified. The results show that:(1)The water absorption ratio model between high permeability channel and low permeability channel during injection and the oil production ratio model of mainstream line and non-mainstream line during oil production established by the injection-production coupling development technology reveal the injection-production coupling seepage mechanics mechanism of“changing pressure field to promote the adjustment of seepage field, achieving balanced injection and production, expanding sweep efficiency of water drive and increasing the oil displacement efficiency”. (2)The injection-production coupling technology can achieve remarkable development effect of“expanding sweep efficiency and increasing oil displacement efficiency”, that is, it plays a similar role of“profile control”. During the high water cut period, this technology can increase the diversion rate of low permeability cores from 1.0% to 18.6%, and the model displacement is more balanced. After two rounds of injection-production coupling adjustment, the oil recovery of high and low permeability cores increased by 10.3% and 16.1%, respectively. (3)The numerical simulation results of injection-production coupling development of Es236 oil-bearing sublayer of Paleogene Shahejie Formation in fault block D of the study area show that the displacement of mainstream line and non-mainstream line was more balanced, and the pressure gradient range between them decreased from 2.3 to 1.4. After three rounds of injection-production coupling development and adjustment, the average comprehensive water cut of the reservoirs in the third to the sixth sand layers of the second member of Shahejie Formation decreased by 3.2%, and the cumulative oil production increased by 1 760 t, which improved the oil recovery by 2.1%, and the effect of increasing oil production and dewatering was remarkable.

Key words: injection-production coupling, physical simulation, numerical simulation, range, seepage field, water drive recovery, fault block reservoir, Shahejie Formation, Dongying Sag, Bohai Bay Basin

中图分类号: 

  • TE312
[1] 董凤玲,周华东,李志萱,等. 卫42断块特低渗油藏挖潜调整研究[J]. 岩性油气藏,2013,25(5):113-116. DONG Fengling,ZHOU Huadong,LI Zhixuan,et al. Study on the potential tapping and adjusting of ultra-low permeability reservoir in Wei 42 block[J]. Lithologic Reservoirs,2013,25(5):113-116.
[2] 崔传智,曾昕,杨勇,等. 氮气吞吐式次生气顶形成条件及其影响因素[J]. 油气地质与采收率,2019,26(5):96-111. CUI Chuanzhi,ZENG Xin,YANG Yong,et al. Formation conditions and influencing factors of secondary gas cap under nitrogen huff and puff technique[J]. Petroleum Geology and Recovery Efficiency,2019,26(5):96-111.
[3] 崔传智,巩受奖,张戈,等. 极复杂断块油藏交替采油提高采收率的可视化物理模拟[J]. 科学技术与工程,2019,19(2):80-85. CUI Chuanzhi,GONG Shoujiang,ZHANG Ge,et al. Visual physical simulation on enhanced oil recovery by alternating oil production in extremely complex fault block reservoirs[J]. Science Technology and Engineering,2019,19(2):80-85.
[4] 宋志超. 极复杂断块油藏层间注采耦合技术优化研究[J]. 石油技术,2018,25(1):145-146. SONG Zhichao. Study on policy optimization of interlayer unstable injection-production technology for extremely fault block reservoirs[J]. Petroleum Technology,2018,25(1):145-146.
[5] 邓猛,邵英博,赵军寿,等. 渤海A油田明化镇组下段河-坝砂体储层构型及剩余油分布[J]. 岩性油气藏,2020,32(6):154-163. DENG Meng,SHAO Yingbo,ZHAO Junshou,et al. Reservoir architecture and remaining oil distribution of channel-bar:A case from lower Minghuazhen Formation in Bohai A oilfield[J]. Lithologic Reservoirs,2020,32(6):154-163.
[6] 刘丽杰. 胜坨油田特高含水后期矢量开发调整模式及应用[J]. 油气地质与采收率,2016,23(3):111-115. LIU Lijie. Vector development adjustment modes and its application in late extra-high water cut stage of Shengtuo oilfield[J]. Petroleum Geology and Recovery Efficiency,2016,23(3):111-115.
[7] 刘志宏,鞠斌山,黄迎松,等. 改变微观水驱液流方向提高剩余油采收率试验研究[J]. 石油钻探技术,2015,43(2):90-96.LIU Zhihong,JU Binshan,HUANG Yingsong,et al. Experimental study on microscopic water-flooding to EOR of remaining oil through changing flow direction[J]. Petroleum Drilling Techniques,2015,43(2):90-96.
[8] 王烁龙,吴晓东,韩国庆,等. 高渗储层特高含水期渗流规律实验模拟及流场表征[J]. 科学技术与工程,2019,19(21):141-148. WANG Shuolong,WU Xiaodong,HAN Guoqing,et al. Experimental study on seepage law and flow field description of high permeability reservoir at extra high water cut stage[J]. Science Technology and Engineering,2019,19(21):141-148.
[9] 王刚. 非均质油藏不稳定注水实验及参数优化设计[D]. 秦皇岛:燕山大学,2011. WANG Gang. Unstable water injection experiment and parameter optimization design for heterogeneous reservoir[D]. Qinhuangdao:Yanshan University,2011.
[10] 吴志伟,杨朝蓬,王国勇,等. 平面非均质油藏水驱开采特征和剩余油分布实验研究[J]. 科学技术与工程,2016,16(13):48-55. WU Zhiwei,YANG Zhaopeng,WANG Guoyong,et al. Experimental study on oil production characteristics of water flooding and remaining oil distribution in the oilfield of plain heterogeneity[J]. Science Technology and Engineering,2016,16(13):48-55.
[11] 崔传智,高敏,张戈,等. 注采耦合挖潜断层夹角区剩余油效果与优化[J]. 中国科技论文,2018,13(23):2648-2653. CUI Chuanzhi,GAO Min,ZHANG Ge,et al. Effect and optimization of residual oil with injection-production coupling technique in the fault angle area[J]. China Sciencepaper,2018,13(23):2648-2653.
[12] 张皓宇,李茂,康永梅,等.鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏,2021,33(6):177-188. ZHANG Haoyu,LI Mao,KANG Yongmei,et al. Reservoir architecture and fine characterization of remaining oil of Chang 3 reservoir in Zhenbei oilfield,Ordos Basin[J]. Lithologic Reservoirs,2021,33(6):177-188.
[13] 侯思伟,王毅,饶政,等. 高含水油藏深部调剖驱油机理实验研究[J]. 科学技术与工程,2020,20(32):13163-13167. HOU Siwei,WANG Yi,RAO Zheng,et al. Experimental study on deep profile control and oil displacement mechanism of high water cut reservoir[J]. Science Technology and Engineering, 2020,20(32):13163-13167.
[14] 徐莎,乐平,柳敏,等. 注采耦合技术提高构造-岩性油藏开发效果[J]. 特种油气藏,2016,23(3):110-112. XU Sha,LE Ping,LIU Min,et al. Injection-production coupling technique for improving the development performance of structural-lithological reservoir[J]. Special Oil & Gas Reservoirs,2016,23(3):110-112.
[15] 王瑞,袁士宝,王建,等. 复杂断块油藏注采耦合技术提高采收率机理[J]. 大庆石油地质与开发,2018,37(6):38-42. WANG Rui,YUAN Shibao,WANG Jian,et al. Mechanism of the injection-production coupling technique for complex faultblock oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing,2018,37(6):38-42.
[16] 崔传智,万茂雯,李凯凯,等. 复杂断块油藏典型井组注采调整方法研究[J]. 特种油气藏,2015,22(4):72-74. CUI Chuanzhi,WAN Maowen,LI Kaikai,et al. Study on adjustment method of injection and production in typical well groups of complex fault block reservoirs[J]. Special Oil & Gas Reservoirs,2015,22(4):72-74.
[17] 王学忠,曾流芳,谷建伟,等. 疏松砂岩油藏不稳定注水机理研究及矿场实践[J]. 大庆石油地质与开发,2008,27(3):59- 63. WANG Xuezhong,ZENG Liufang,GU Jianwei,et al. Unstable water injection mechanism and its field application in loose sandstone reservoir[J]. Petroleum Geology & Oilfield Development in Daqing,2008,27(3):59-63.
[18] 王建. 注采耦合技术提高复杂断块油藏水驱采收率:以临盘油田小断块油藏为例[J]. 油气地质与采收率,2013,20(3):89-91. WANG Jian. Research on unstable injection-production to improve oil recovery in complicated fault block of Shengli oilfield:Case study of fault block oil reservoirs in Linpan oilfield[J]. Petroleum Geology and Recovery Efficiency,2013,20(3):89-91.
[19] 邹桂丽,袁成武,李祥珠,等. 高含水油藏整体注采耦合参数优化方法[J]. 石油化工应用,2017,36(6):28-33. ZOU Guili,YUAN Chengwu,LI Xiangzhu,et al. Optimization method for coupling injection production in high water cut reservoir[J]. Petrochemical Industry Application,2017,36(6):28-33.
[20] 王瑞. 动态注采耦合开发特征与适用性及技术政策界限[J]. 油气地质与采收率,2022,29(2):100-108. WANG Rui. Study on both characteristics and applicabilities of dynamic injection-production coupling development and technical policy boundaries[J]. Petroleum Geology and Recovery Efficiency,2022,29(2):100-108.
[21] 王瑞. 复杂断块油藏注采耦合技术提高原油采收率的力学机制研究[J]. 中国科技论文,2020,15(1):60-66. WANG Rui. Mechanical mechanism of the injection-production coupling technique for complex fault-block oil reservoirs[J]. China Sciencepaper,2020,15(1):60-66.
[22] 赵北辰. 断块油藏水驱油注采耦合机理及参数优化[D]. 北京:中国地质大学(北京),2020. ZHAO Beichen. Coupling mechanism and parameter optimization of water-drive injection-production in fault block reservoirs[D]. Beijing:China University of Geosciences(Beijing),2020.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55.
[3] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[4] 董柔, 李坤, 殷际航, 薛煜恒, 江涛, 徐国盛. 渤东凹陷新生代伸展-走滑叠合断裂时空差异演化模式及控藏效应[J]. 岩性油气藏, 2024, 36(3): 106-116.
[5] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[6] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[7] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[8] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
[9] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[10] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[11] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
[12] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
[13] 钱真, 毛志强, 郑伟, 黄远军, 陈立峰, 曾慧勇, 李岗, 宋嫒. 井间单套缝洞型油藏橡胶颗粒调剖堵水实验[J]. 岩性油气藏, 2023, 35(4): 161-168.
[14] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60.
[15] 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .