岩性油气藏 ›› 2024, Vol. 36 ›› Issue (4): 169–177.doi: 10.12108/yxyqc.20240415

• 石油工程与油气田开发 • 上一篇    下一篇

致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟

唐述凯1, 郭天魁2, 王海洋2, 陈铭2   

  1. 1. 中国石化胜利油田分公司 东胜精攻石油开发集团股份有限公司, 山东 东营 257000;
    2. 中国石油大学(华东)石油工程学院, 山东 青岛 266580
  • 收稿日期:2022-12-20 修回日期:2023-03-14 出版日期:2024-07-01 发布日期:2024-07-04
  • 第一作者:唐述凯(1980—),博士,高级工程师,主要从事压裂措施改造、机械采油及钻采工程方案编制等采油工程方面的工作。地址:(257000)胜利油田东胜精攻石油开发集团股份有限公司。Email:kennytown@139.com。
  • 通信作者: 郭天魁(1984—),博士,教授,主要从事储层压裂改造理论与技术方面的教学和科研工作。Email:guotiankui@126.com。
  • 基金资助:
    山东省优秀青年科学基金项目“储层压裂改造理论与方法”(编号:ZR2020YQ36)资助。

Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs

TANG Shukai1, GUO Tiankui2, WANG Haiyang2, CHEN Ming2   

  1. 1. Dongsheng Jinggong Petroleum Development Group Co., Ltd., Sinopec Shengli Oilfield Company, Dongying 257000, Shandong, China;
    2. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2022-12-20 Revised:2023-03-14 Online:2024-07-01 Published:2024-07-04

摘要: 基于损伤力学理论,建立了储层渗流-应力-损伤耦合裂缝扩展数值模型,将模型结果与室内真三轴水力压裂物理模拟实验结果进行了对比,验证了模型的准确性,并基于该模型探讨了压裂液黏度、排量、水平地应力差以及储层岩石非均质性对缝内暂堵转向压裂效果的影响。研究结果表明:①储层渗流-应力-损伤耦合裂缝扩展数值模型是联合流体流动控制方程与岩石变形方程形成整体控制方程,通过在初始裂缝扩展路径上某一区域人为设置高强度的岩石物理力学参数和较小的储层渗透率值,实现缝内暂堵的模拟。②缝内暂堵转向压裂裂缝扩展模型数值模拟的分支缝数量、主裂缝面积、主裂缝延伸方向等与室内真三轴水力压裂物理模拟实验的结果基本一致,该模型可实现缝内暂堵后基质的破裂与新裂缝扩展模拟,对缝内暂堵转向压裂裂缝扩展情况也具有较好的模拟效果。③压裂液的黏度和排量越大,缝内暂堵转向压裂裂缝长度、改造面积及偏转角度均明显增大,且逐渐由单一裂缝向复杂裂缝转变。当水平地应力差小于 7.5 MPa 时,缝内暂堵转向压裂的效果较好;当水平地应力差为 10~15 MPa 时,压裂效果变差;当水平地应力差大于 15 MPa 时,裂缝几乎不偏转;储层非均质性会影响裂缝局部的扩展路径,但对裂缝总体扩展趋势影响甚微。

关键词: 致密储层, 缝内暂堵转向压裂, 裂缝扩展数值模型, 真三轴水力压裂物理模拟, 裂缝偏转, 损伤力学, 水平地应力差, 非均质性

Abstract: Based on the theory of damage mechanics,a numerical model of reservoir flow-stress-damage coupling fracture propagation was established,and it was verified by comparing with inddor true triaxial hydraulic fracturing physical simulation experiment results. What’s more,the influences of fracturing fluid viscosity,displacement,horizontal stress difference and reservoir rock heterogeneity on in-fracture temporary plugging and diverting fracturing were discussed. The results show that:(1)The numerical model of reservoir flow-stress- damage coupling fracture propagation is a combination of fluid flow control equation and rock deformation equation to form an overall control equation,and the temporary plugging in the fracture can be simulated by artificially setting high-strength rock physical and mechanical parameters and small reservoir permeability values in a certain area along the initial fracture propagation path.(2)The numbers of branch fractures,area of main fractures,and extension direction of main fracture in numerical simulation of in-fracture temporary plugging and diverting fracturing fracture propagation model are basically consistent with the results of indoor true triaxial hydraulic fracturing physical simulation experiment results. This model can achieve the simulation of matrix fracture and new fracture extension after temporary plugging in fractures,and also has a good simulation effect on the situation of in-fracture temporary plugging and diverting fracturing fracture propagation.(3)The larger the viscosity and displacement of fracturing fluid,the greater the length,reconstruction area and deflection angle of in-fracture temporary plugging and diverting fracturing fracture,and single fractures gradually transition to complex fractures. When the horizontal stress difference is less than 7.5 MPa,the effect of in-fracture temporary plugging and diverting fracturing is better. When the horizontal stress difference is 10-15 MPa,the fracturing effect deteriorates. When the horizontal stress difference is greater than 15 MPa,the fractures hardly deflect. Reservoir heterogeneity can affect the local propagation path of fractures,but has little impact on the overall propagation trend of fractures.

Key words: tight reservoirs, in-fracture temporary plugging and diverting fracturing, numerical model of fracture propagation, true triaxial hydraulic fracturing physical simulation, fracture deflection, damage mechanics, horizontal stress difference, heterogeneity

中图分类号: 

  • TE357.1
[1] 王永辉,卢拥军,李永平,等.非常规储层压裂改造技术进展及应用[J].石油学报,2012,33(1):149-158. WANG Yonghui,LU Yongjun,LI Yongping,et al. Progress and application of hydraulic fracturing technology in unconventional reservoir[J]. Acta Petrolei Sinica,2012,33(1):149-158.
[2] 王拓,朱如凯,白斌,等.非常规油气勘探、评价和开发新方法[J].岩性油气藏,2013,25(6):35-39. WANG Tuo,ZHU Rukai,BAI Bin,et al. New methods for the exploration,evaluation and development of unconventional reservoirs[J]. Lithologic Reservoirs,2013,25(6):35-39.
[3] MAYERHOFER M J,LOLON E,WARPINSKI N R,et al. What is stimulated reservoir volume?[J]. SPE Production&Operations,2010,25(1):89-98.
[4] 苏皓,雷征东,张荻萩,等.致密油藏体积压裂水平井参数优化研究[J].岩性油气藏,2018,30(4):140-148. SU Hao,LEI Zhengdong,ZHANG Diqiu,et al. Volume fracturing parameters optimization of horizontal well in tight reservoir[J]. Lithologic Reservoirs,2018,30(4):140-148.
[5] GUO Tiankui,ZHANG Shicheng,QU Zhanqing,et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel,2014,128:373-380.
[6] 张雄,王晓之,郭天魁,等.顺北油田缝内转向压裂暂堵剂评价实验[J].岩性油气藏,2020,32(5):170-176. ZHANG Xiong,WANG Xiaozhi,GUO Tiankui,et al. Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield[J]. Lithologic Reservoirs,2020,32(5):170-176.
[7] LIU Xiaoqiang,QU Zhanqing,GUO Tiankui,et al. Numerical simulation of non-planar fracture propagation in multi-cluster fracturing with natural fractures based on lattice methods[J]. Engineering Fracture Mechanics,2019,220:106625.
[8] 曾义金.深层页岩气开发工程技术进展[J].石油科学通报, 2019,4(3):233-241. ZENG Yijin. Progress in engineering technologies for the development of deep shale gas[J]. Petroleum Science Bulletin,2019, 4(3):233-241.
[9] 蒋廷学,王海涛,卞晓冰,等.水平井体积压裂技术研究与应用[J].岩性油气藏,2018,30(3):1-11. JIANG Tingxue,WANG Haitao,BIAN Xiaobing,et al. Volume fracturing technology for horizontal well and its application[J]. Lithologic Reservoirs,2018,30(3):1-11.
[10] WANG Bo,ZHOU Fujian,LIANG Dongbing,et al. Numerical simulation on near-wellbore temporary plugging and diverting during refracturing using XFEM-Based CZM[J]. Journal of Natural Gas Science and Engineering,2018,55:368-381.
[11] YUAN Lishan,ZHOU Fujian,LI Ben,et al. Experimental study on the effect of fracture surface morphology on plugging efficiency during temporary plugging and diverting fracturing[J]. Journal of Natural Gas Science and Engineering,2020,81:103459.
[12] LI Wei,ZHAO Huan,PU Hui,et al. Study on the mechanisms of refracturing technology featuring temporary plug for fracturing fluid diversion in tight sandstone reservoirs[J]. Energy Science&Engineering,2019,7(1):88-97.
[13] YANG Chen,FENG Wei,ZHOU Fujian. Formation of temporary plugging in acid-etched fracture with degradable diverters[J]. Journal of Petroleum Science and Engineering,2020,194:107535.
[14] BIOT M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics,1955,26(2):182-185.
[15] GUO Tiankui,ZHANG Shicheng,ZOU Yushi,et al. Numerical simulation of hydraulic fracture propagation in shale gas reservoir[J]. Journal of Natural Gas Science and Engineering,2015, 26:847-856.
[16] RUI Zhenhua,GUO Tiankui,FENG Qiang,et al. Influence of gravel on the propagation pattern of hydraulic fracture in the glutenite reservoir[J]. Journal of Petroleum Science and Engineering,2018,165:627-639.
[17] YANG Zhaozhong,YI Liangping,LI Xiaogang,et al. Wellbore temperature and pressure calculation model for supercritical carbon dioxide jet fracturing[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2019,41(2):185-200.
[18] WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics,1951,13(2):293-297.
[19] WONG T F,WONG R H C,CHAU K T,et al. Microcrack statistics,weibull distribution and micromechanical modeling of compressive failure in rock[J]. Mechanics of Materials,2006, 38(7):664-681.
[20] KUMAR H,ELSWORTH D,MATHEWS J P,et al. Permeability evolution insorbing media:Analogies between organic-rich shale and coal[J]. Geofluids,2015,16(1):43-55.
[21] GUO Tiankui,TANG Songjun,LIU Shun,et al. Physical simulation of hydraulic fracturing of large-sized tight sandstone outcrops[J]. SPE Journal,2021,26(1):372-393.
[1] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[2] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[3] 秦正山, 何勇明, 丁洋洋, 李柏宏, 孙双双. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188.
[4] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[5] 谢瑞, 张尚锋, 周林, 刘皓天, 姚明君, 蒋雪桂. 川东地区侏罗系自流井组大安寨段致密储层油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 108-119.
[6] 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏, 2022, 34(4): 89-102.
[7] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[8] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[9] 梁志凯, 李卓, 李连霞, 姜振学, 刘冬冬, 高凤琳, 刘晓庆, 肖磊, 杨有东. 松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏, 2020, 32(6): 22-35.
[10] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
[11] 戚涛, 胡勇, 李骞, 赵梓寒, 张春, 李滔. 考虑弥散的混溶驱替模拟[J]. 岩性油气藏, 2020, 32(5): 161-169.
[12] 陈怡婷, 刘洛夫, 王梦尧, 窦文超, 徐正建. 鄂尔多斯盆地西南部长6、长7储集层特征及控制因素[J]. 岩性油气藏, 2020, 32(1): 51-65.
[13] 刘秀婵, 陈西泮, 刘伟, 王霞. 致密砂岩油藏动态渗吸驱油效果影响因素及应用[J]. 岩性油气藏, 2019, 31(5): 114-120.
[14] 安杰, 唐梅荣, 曹宗熊, 王文雄, 陈文斌, 吴顺林. 超低渗透低压油藏水平井转变开发方式试验[J]. 岩性油气藏, 2019, 31(5): 134-140.
[15] 刘冬冬, 杨东旭, 张子亚, 张晨, 罗群, 潘占昆, 黄治鑫. 基于常规测井和成像测井的致密储层裂缝识别方法——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2019, 31(3): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .