岩性油气藏 ›› 2020, Vol. 32 ›› Issue (6): 22–35.doi: 10.12108/yxyqc.20200603

• 油气地质 • 上一篇    下一篇

松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系

梁志凯1,2, 李卓1,2, 李连霞3, 姜振学1,2, 刘冬冬1,2, 高凤琳1,2, 刘晓庆4, 肖磊1,2, 杨有东1,2   

  1. 1. 中国石油大学 (北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石油大学 (北京)非常规油气科学技术研究院, 北京 102249;
    3. 中国石油长庆油田分公司 勘探开发研究院, 西安 710018;
    4. 重庆大学 材料科学与工程学院, 重庆 400044
  • 收稿日期:2020-02-26 修回日期:2020-06-27 出版日期:2020-12-01 发布日期:2020-10-30
  • 第一作者:梁志凯(1995-),男,中国石油大学(北京)在读硕士研究生,研究方向为非常规天然气成藏与地质评价。地址:(102249)北京市昌平区府学路中国石油大学(北京)油气资源与探测国家重点实验室。Email:liangzhikai2020@163.com
  • 通信作者: 李卓(1983-),男,博士,副研究员,主要从事非常规油气储层预测与评价方面的研究工作。Email:zhuo.li@cup.edu.cn。
  • 基金资助:
    国家重大科技专项“中生界陆相不同盆地类型页岩气赋存方式与富集规律研究”(编号:2016ZX05034-001-005)资助

Relationship between multifractal characteristics of pore size and lithofacies of shale of Shahezi Formation in Changling fault depression,Songliao Basin

LIANG Zhikai1,2, LI Zhuo1,2, LI Lianxia3, JIANG Zhenxue1,2, LIU Dongdong1,2, GAO Fenglin1,2, LIU Xiaoqing4, XIAO Lei1,2, YANG Youdong1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Institute of Unconventional Natural Gas, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    4. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
  • Received:2020-02-26 Revised:2020-06-27 Online:2020-12-01 Published:2020-10-30

摘要: 为了分析不同页岩岩相孔径分布的非均质特征及其影响因素,采用CO2与N2吸附实验分别对长岭断陷沙河子组页岩的8种岩相进行了孔隙结构表征,并运用多重分形理论研究孔径分布非均质性。结果表明:对于微孔,富有机质黏土质页岩具有最大的孔体积和比表面积,富有机质混合质页岩具有最小的孔体积和比表面积;对于中—宏孔,富有机质混合质页岩具有最大的孔体积,含有机质黏土质页岩具有最小的孔体积和比表面积。随着q的增大,气体吸附曲线的广义分形维数Dq减小,多重分形奇异谱函数α-fα)呈现连续分布,表明页岩孔径分布具有多重分形特征;在微孔中,富有机质硅质页岩孔径离散程度最弱,富有机质混合质页岩孔隙非均质性最强;在中—宏孔中,富有机质硅质页岩具有孔隙非均质性最强、孔径分布离散程度最弱的特点;微孔与中—宏孔相比,整体非均质性较低;根据偏最小二乘回归法分析结果,不同岩石组分对于岩相的影响存在显著差异,其中TOC含量是影响孔隙非均质性的主要因素。该研究成果可从多重分形理论角度揭示不同岩相的孔径分布特征差异,为松辽盆地长岭断陷沙河子组页岩储层开发提供依据。

关键词: 多重分形维数, 非均质性, 陆相页岩, 沙河子组, 长岭断陷, 松辽盆地

Abstract: In order to analyze the heterogeneity of pore size distribution of different shale lithofacies and its influencing factors,the pore structure of eight types of shale lithofacies of Shahezi Formation in Changling fault depression was characterized by CO2 and N2 adsorption experiments,and the heterogeneity of pore size distribution was studied by multifractal theory. The results show that:for micro pores,organic-rich clay shale has the largest pore volume and specific surface area,and organic-rich mixed shale has the smallest pore volume and specific surface area;for meso-macropores,organic-rich mixed shale has the largest pore volume,and organic clay shale has the smallest pore volume and specific surface area. With the increase of q,the generalized fractal dimension Dq of gas adsorption curve decreases,the multifractal singular spectral function α-f (α)presents a continuous distribution, indicating that the shale pore size distribution has multiple fractal features. In the micropores, the organicrich siliceous shale has the smallest dispersion of pore size distribution,however,the heterogeneity of organic-rich mixed shale is the largest. In the meso-macropores, organic-rich siliceous shale lithofacies has the strongest heterogeneity and the smallest dispersion of pore size distribution. Micropores have a lower overall heterogeneity, comparing with meso-macropores. Based on partial least squares regression analysis,there are significant differences in the influence of different rock components on lithofacies,and TOC content is the main factor affecting pore heterogeneity. Based on the multifractal theory,the research results can reveal the difference of pore size distribution characteristics from different lithofacies,and can provide guidance for shale reservoir development of Shahezi Formation in Changling fault depression, Songliao Basin.

Key words: multifractal dimension, heterogeneity, continental shale, Shahezi Formation, Changling fault depression, Songliao Basin

中图分类号: 

  • P618.13
[1] 解习农, 郝芳, 陆永潮, 等.南方复杂地区页岩气差异富集机理及其关键技术.地球科学, 2017, 42(7):1045-1056. XIE X N, HAO F, LU Y C, et al. Differential enrichment mechanism and key technology of shale gas in complex areas of South China. Earth Science, 2017, 42(7):1045-1056.
[2] 王朋飞, 姜振学, 李卓, 等.渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征.地球科学, 2017, 42(7):1147-1156. WANG P F, JIANG Z X, LI Z, et al. Micro-nano pore structure characteristics in the Lower Cambrian Niutitang shale, Northeast Chongqing. Earth Science, 2017, 42(7):1147-1156.
[3] 李卓, 姜振学, 唐相路, 等.渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制.地球科学, 2017, 42(7):1116-1123. LI Z, JIANG Z X, TANG X L, et al. Lithfacies characteristics and its effect on pore structure of the marine shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 2017, 42(7):1116-1123.
[4] LI Z, LIANG Z K, JIANG Z X, et al. Pore connectivity characterization of lacustrine shales in Changling fault depression, Songliao Basin, China:Insights into the effects of mineral compositions on connected pores. Minerals, 2019, 9(3):198-219.
[5] GAO Z Y, YANG S, JIANG Z X, et al. Investigating the spontaneous imbibition characteristics of continental Jurassic Ziliujing Formation shale from the northeastern Sichuan Basin and correlations to pore structure and composition. Marine and Petroleum Geology, 2018, 98:697-705.
[6] LAN Q, XU M X, BINAZADEH M, et al. A comparative investigation of shale wettability:The significance of pore connectivity. Journal of Natural Gas Science and Engineering, 2015, 27:1174-1188.
[7] 高健, 林良彪, 任天龙, 等.川北地区下侏罗统东岳庙段页岩气富集主控因素研究.岩性油气藏, 2016, 28(5):67-75. GAO J, LIN L B, REN T L, et al. Controlling factors for shale gas enrichment of the Lower Jurassic Dongyuemiao member in the northern Sichuan Basin. Lithologic Reservoirs, 2016, 28(5):67-75.
[8] 龚小平, 唐洪明, 赵峰, 等.四川盆地龙马溪组页岩储层孔隙结构的定量表征.岩性油气藏, 2016, 28(3):48-57. GONG X P, TANG H M, ZHAO F, et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin. Lithologic Reservoirs, 2016, 28(3):48-57.
[9] 郑珊珊, 刘洛夫, 汪洋, 等.川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素.岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[10] MANDELBROT B B. Fractal geometry:What is it, and what does it do? Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1989, 423:3-16.
[11] LOPES R, BETROUNI N. Fractal and multifractal analysis:a review. Medical Image Analysis, 2009, 13(4):634-649.
[12] 周虎, 李保国, 吕贻忠, 等.不同耕作措施下土壤孔隙的多重分形特征.土壤学报, 2010, 47(6):1094-1100. ZHOU H, LI B G, LYU Y Z, et al. Multi fractal characteristics of soil pore structure under different tillage systems. Acta Pedologica Sinica, 2010, 47(6):1094-1100.
[13] 王金满, 张萌, 白中科, 等.黄土区露天煤矿排土场重构土壤颗粒组成的多重分形特征.农业工程学报, 2014, 30(4):230-238. WANG J M, ZHANG M, BAI Z K, et al. Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in loess area. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4):230-238.
[14] 孙哲, 王一博, 刘国华, 等.基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析.冰川冻土, 2015, 37(4):980-990. SUN Z, WANG Y B, LIU G H, et al. Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory. Journal of Glaciology and Geocryology, 2015, 37(4):980-990.
[15] WANG P F, JIANG Z X, YIN L S, et al. Lithofacies classification and its effect on pore structure of the cambrian marine shale in the Upper Yangtze Platform, South China:Evidence from FE-SEM and gas adsorption analysis. Journal of Petroleum Science and Engineering, 2017, 156:307-321.
[16] 张林, 刘春燕.日中两国不同经济时期股市的多重分形分析. 系统工程理论与实践, 2013, 33(2):317-328. ZHANG L, LIU C Y. Multifractal analysis of Japan and China stock markets in different economy periods. Systems Engineering-Theory & Practice, 2013, 33(2):317-328.
[17] YANG W, ZUO R S, JIANG Z X, et al. Effect of lithofacies on pore structure and new insights into pore-preserving mechanisms of the over-mature Qiongzhusi marine shales in Lower Cambrian of the southern Sichuan Basin,China. Marine & Petroleum Geology, 2018, 98:746-762.
[18] 梁志凯, 李卓, 高凤琳, 等.陆相断陷湖盆地层划分及沉积充填模式:以松辽盆地长岭断陷沙河子组为例.能源与环保, 2019, 41(5):73-83. LIANG Z K, LI Z, GAO F L, et al. Stratigraphic classification and sedimentary filling model of continental faulted lacustrine basin:a case study of Shahezi Formation in Changling fault depression, Songliao Basin. China Energy and Environmental Protection, 2019, 41(5):73-83.
[19] TANG X L, JIANG Z X, HUANG H X, et al.Lithofacies characteristics and its effect on gas storage of the Silurian Longmaxi marine shale in the southeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 2016, 28:338-346.
[20] 张少敏, 操应长, 朱如凯, 等.雅布赖盆地小湖次凹细粒沉积岩岩相特征与沉积环境探讨.天然气地球科学, 2016, 27(2):309-319. ZHANG S M, CAO Y C, ZHU R K, et al. The lithofacies and depositional environment of fine-grained sedimentary rocks of Xiaohu Subag in Yabulai Basin. Natural Gas Geoscience, 2016, 27(2):309-319.
[21] 朱逸青, 王兴志, 冯明友, 等.川东地区下古生界五峰组-龙马溪组页岩岩相划分及其与储层关系.岩性油气藏, 2016, 28(5):59-66. ZHU Y Q, WANG X Z, FENG M Y, et al. Lithofacies classification and its relationship with reservoir of the Lower Paleozoic Wufeng-Longmaxi Formation in the eastern Sichuan Basin. Lithologic Reservoirs, 2016, 28(5):59-66.
[22] 车世琦.测井资料用于页岩岩相划分及识别:以涪陵气田五峰组-龙马溪组为例.岩性油气藏, 2018, 30(1):121-132. CHE S Q. Shale lithofacies identification and classification by using logging data:a case of Wufeng-Longmaxi Formation in Fuling Gas Field, Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):121-132.
[23] LI Z, LIANG Z K, JIANG Z X, et al. The impacts of matrix compositions on nanopore structure and fractal characteristics of lacustrine shales from the Changling fault depression, Songliao Basin, China. Minerals, 2019, 9(2):127-148.
[24] CHEN L, LU Y C, JIANG S, et al. Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China. Marine and Petroleum Geology, 2015, 65:232-246.
[25] GAO F L, SONG Y, LI Z, et al. Lithofacies and reservoir characteristics of the Lower Cretaceous continental Shahezi shale in the Changling fault depression of Songliao Basin, NE China. Marine and Petroleum Geology, 2018, 98:401-421.
[26] 胡纯心.长岭断陷构造特征及白垩纪以来的构造演化.石油与天然气地质, 2013, 34(2):229-235. HU C X. Structural characteristics and post-Cretaceous tectonic evolution of the Changling Rift. Oil & Gas Geology, 2013, 34(2):229-235.
[27] 张瀛涵, 李卓, 刘冬冬, 等.松辽盆地长岭断陷沙河子组页岩岩相特征及其对孔隙结构的控制. 石油实验地质, 2019, 41(1):142-148. ZHANG Y H, LI Z, LIU D D, et al. Lithofacies characteristics and impact on pore structure of the Shahezi Formation shale, Changling fault depression, Songliao Basin. Petroleum Geology & Experiment, 2019, 41(1):142-148.
[28] DO D D, DO H D. Pore characterization of carbonaceous materials by DFT and GCMC simulations:a review. Adsorption Science & Technology, 2003, 21(5):389-423.
[29] LIU K Q, OSTADHASSAN M, ZOU J, et al. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale. Fuel, 2018, 219:296-311.
[30] LIU K Q, WANG L, OSTADHASSAN M, et al. Nanopore structure comparison between shale oil and shale gas:Examples from the Bakken and Longmaxi Formations. Petroleum Science, 2019, 16(1):77-93.
[31] LIU K Q, OSTADHASSAN M, KONG L Y. Multifractal characteristics of Longmaxi shale pore structures by N2 adsorption:a model comparison. Journal of Petroleum Science and Engineering, 2018, 168:330-341.
[32] OTTO M, WEGSCHEIDER W, LANKMAYR E P. Single-and multi-channel detection for generalized quantitative analysis in cases of unresolved chromatographic peaks. Analytica Chimica Acta, 1985, 171:13-31.
[33] WOLD S, RUHE A, WOLD H, et al. The collinearity problem in linear regression. The partial least squares(PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing, 1984, 5(3):735-743.
[34] 潘国锋.基于紫外吸收光谱的水质硝酸盐含量LLE-SVR建模.仪器仪表学报, 2011, 32(12):2869-2873. PAN G F. LLE-SVR modeling for nitrate measurement in water based on UV absorption spectra. Chinese Jounal of Scientific Instrument, 2011, 32(12):2869-2873.
[35] 杨鹏程.紫外吸收光谱结合偏最小二乘法海水硝酸盐测量技术研究.天津:国家海洋技术中心, 2013. YANG P C. Research on determination of nitrate in seawater based on ultraviolet spectra combined with PLS method. Tianjin:National Marine Technology Center, 2013.
[36] WANG P F, JIANG Z Y, YIN L S, et al. Lithofacies classification and its effect on pore structure of the Cambrian marine shale in the Upper Yangtze Platform, South China:Evidence from FESEM and gas adsorption analysis. Journal of Petroleum Science and Engineering, 2017, 156:307-321.
[37] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4):603-619.
[38] GROEN J C, PEFFER L A A, PEREZ-RAMIREZ J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, 2003, 60(1/3):1-17.
[39] GREGG S J, SING K S W. Adsorption, surface area and porosity. London:Academic Press, 1982:195-197.
[40] 李彤.多重分形原理及其若干应用.北京:北京交通大学, 2007. LI T. Muitifactal theory and some applications. Beijing:Beijing Jiaotong University, 2007.
[41] 管孝艳, 杨培岭, 吕烨.基于多重分形的土壤粒径分布与土壤物理特性关系.农业机械学报, 2011, 42(3):44-50. GUAN X Y, YANG P L, LYU Y, et al. Relationships between soil particle size distribution and soil physical properties based on multifractal. Transactions of The Chinese Society of Agricultural Machinery, 2011, 42(3):44-50.
[42] RIEDI R H, CROUSE M S, RIBEIRO V J, et al. A multifractal wavelet model with application to network traffic. IEEE transactions on Information Theory, 1999, 45(3):992-1018.
[43] 管孝艳, 杨培岭, 任树梅, 等.基于多重分形理论的壤土粒径分布非均匀性分析.应用基础与工程科学学报, 2009, 17(2):196-205. GUAN X Y, YANG P L, REN S M, et al. Non-uniformity analysis of loam particle size distribution based on multifractal theory. Journal of Basic Science and Engineering, 2009, 17(2):196-205.
[44] 王国华, 张虎, 魏岳嵩.偏最小二乘回归在SPSS软件中的实现.统计与决策, 2017(7):67-71. WANG G H, ZHANG H, WEI Y S. Implementation of partial least squares regression in SPSS software. Statistics and Decision, 2017(7):67-71.
[1] 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[2] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[3] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[4] 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45.
[5] 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34.
[6] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[7] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[8] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[9] 杜长鹏. 松辽盆地莺山-双城断陷白垩系致密火山岩天然气成藏条件及主控因素[J]. 岩性油气藏, 2023, 35(4): 115-124.
[10] 康家豪, 王兴志, 谢圣阳, 曾德铭, 杜垚, 张芮, 张少敏, 李阳. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4): 53-65.
[11] 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏, 2022, 34(4): 89-102.
[12] 刘宗堡, 李雪, 郑荣华, 刘化清, 杨占龙, 曹松. 浅水三角洲前缘亚相储层沉积特征及沉积模式——以大庆长垣萨北油田北二区萨葡高油层为例[J]. 岩性油气藏, 2022, 34(1): 1-13.
[13] 李梦莹, 朱如凯, 胡素云. 海外陆相页岩油地质特征与资源潜力[J]. 岩性油气藏, 2022, 34(1): 163-174.
[14] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[15] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .