岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 1–12.doi: 10.12108/yxyqc.20210301

• 油气地质 •    下一篇

坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例

刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽   

  1. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2020-07-01 修回日期:2020-09-20 发布日期:2021-06-03
  • 作者简介:刘化清(1969—),男,博士,教授级高级工程师,主要从事沉积学、地震沉积学及石油地质综合研究方面的工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:liu_hq@petrochina.com.cn。
  • 基金资助:
    国家重大科技专项“岩性地层油气藏成藏规律、关键技术及目标评价”(编号:2017ZX05001-003)资助

Seismic reflection and sedimentary characteristics of deep-water gravity flow channels on the slope of lacustrine depression basin: First member of Nenjiang Formation in LHP area, Songliao Basin

LIU Huaqing, FENG Ming, GUO Jingyi, PAN Shuxin, LI Hailiang, HONG Zhong, LIANG Sujuan, LIU Caiyan, XU Yunze   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2020-07-01 Revised:2020-09-20 Published:2021-06-03

摘要: 松辽盆地湖盆深水区重力流沉积广泛发育,由于资料分辨率低的限制,以往对其时空演化、内部结构方面的认识不清。基于高精度三维地震资料,利用90°相位转换、地层切片、光照显示等技术,研究了LHP地区下白垩统嫩一段湖盆深水斜坡上发育的重力流水道的地震特征以及水道的内部结构。结果表明:①嫩一段沉积时期,本区坡降为0.5‰~1.0‰,发育早、晚2套共9条迥然不同的水道系统。早期水道E-I处于整个重力流水道系统的下游近末端,为非限制性水道,宽度小于40 m,广泛发育决口分流水道,对下伏早期沉积侵蚀弱。晚期水道A-D处于重力流水道系统的中段,为限制性水道,其宽度为50~370 m,在曲流环发育部位宽度可达500 m,这类水道的下切深度可达20 m,剖面形态为U或V型,局部发育2~5 m高的天然堤。发育早、晚2套不同的水道系统可能与构造持续沉降导致盆地斜坡区的坡降变化有关。②坡降与水道曲率、深度与宽度之间均呈良好的正相关关系。③水道中细砂岩、粉砂岩包裹在优质烃源岩当中,具有形成岩性油气藏的良好条件,是今后重要的勘探领域。

关键词: 湖盆深水斜坡, 重力流水道, 地震沉积学, 地震地貌学, 水道结构参数, 嫩江组, 松辽盆地

Abstract: Multiple deep-water slope channels have been observed within the lacustrine Songliao Basin, northeastern China. To understandthe spatial-temporal evolution and internal structures of these channels,techniques including 90° phase rotation,stratal slicing,opacity stacks and illumination were used to study the seismic characteristics and internal structure of gravity flow channels developed on the deep-water slope of lacustrine basin of Lower Cretaceous Nen 1 member in LHP area. The results show that: (1)Nine channels within the 50 km2 LHP area were developed in Nen 1 member of the Late Cretaceous Nenjiang Formation. The depositional setting was a sublacustrine slope characterized by a gradient of 0.5‰ - 1.0‰.(2) Based on morphology,the channels were grouped into two channel systems based on size and degree of associated erosion:small meandering channels characterized by sinuosity of 1.03-1.17,which developed early and were commonly less than 40 m wide. Erosional confinement was minimal and distal avulsions were common. These channels can be described as relatively unconfined,lying down-slope of large gravity-flow systems.(3)Larger meandering channels with sinuosity of 1.04-1.45 and widths up to 500 m,were characterized by greater erosion with maximum erosional valley relief of 20 m. These channels were sufficiently large so that cross profiles could be evaluated,revealing U/V shaped section morphology. Avulsions were uncommon and levees were observed locally. These channels likely lie within the central part of associated gravity-flow systems.(4)Morphological statistics suggest that channel slope and sinuosity,depth and width are positively correlated.(5)Well data from neighboring area indicate that the channel fills were characterized by predominantly silt/fine sandstones with thickness of 10-20 m. These reservoir-prone deposits were bracketed in good quality source rocks making them favorable hydrocarbon exploration targets.(6)The Late Cretaceous global anoxic event possibly caused the abnormal climate(frequent flooding events)and then the frequent gravity flows in the Nen 1 member of lacustrine basin. The continuous subsidence increased the gradient of the paleo-lake and subsequently caused the geomorphology difference between the channels A-D and E-I.

Key words: sublacustrine slope, gravity flow channels, seismic sedimentology, seismic geomorphology, channel structure parameters, Nenjiang Formation, Songliao Basin

中图分类号: 

  • TE121.3
[1] 冯志强, 张顺, 解习农, 等. 松辽盆地嫩江组大型陆相坳陷湖盆湖底水道的发现及其石油地质意义. 地质学报, 2006, 80(6):1226-1233. FENG Z Q, ZHANG S, XIE X N, et al. Discovery of a large-scale lacustrine subaqueous channel in the Nenjiang Formation of the Songliao Basin and its implication on petroleum geology. Acta Geologica Sinica, 2006, 80(6):1226-1233.
[2] 潘树新, 刘化清, ZAVALA C, 等.大型坳陷湖盆异重流成因的水道-湖底扇系统:以松辽盆地白垩系嫩江组一段为例. 石油勘探与开发, 2017, 44(6):911-922. PAN S X, LIU H Q, ZAVALA C, et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin:A case study of Nen 1 member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China. Petroleum Exploration and Development, 2017, 44(6):911-922.
[3] 莫午零, 吴朝东, 张顺. 松辽盆地北部嫩江组沉积物重力流形成机制. 天然气地球科学, 2013, 24(3):555-565. MO W L, WU C D, ZHANG S. Generation mechanism of sediment gravity flow of Nenjiang Formation in the north Songliao Basin. Natural Gas Geoscience, 2013, 24(3):555-565.
[4] FENG Z Q, ZHANG S, CROSSW T A, et al. Lacustrine turbidite channels and fans in the Mesozoic Songliao Basin, China. Basin Research, 2010, 22(1):96-107.
[5] 冯志强, 张顺, 付秀丽. 松辽盆地姚家组-嫩江组沉积演化与成藏响应.地学前缘, 2012, 19(1):78-88. FENG Z Q, ZHANG S, FU X L. Depositional evolution and accumulation response of Yaojia-Nenjiang Formation in Songliao Basin. Earth Science Frontiers, 2012, 19(1):78-88.
[6] 萧德铭, 迟元林, 蒙启安, 等.松辽盆地北部向斜区岩性油藏勘探认识与实践. 北京:石油工业出版社, 2005:1-65. XIAO D M, CHI Y L, MENG Q A, et al. Understanding and practice of lithologic reservoir exploration in syncline area of northern Songliao Basin. Beijing:Petroleum Industry Press, 2005:1-65.
[7] ZENG H L, LOUCKS R G, BROWN L F. Mapping sedimentdispersal patterns and associated systems tracts in fourth-and fifth-order sequences using seismic sedimentology:Example from Corpus Christi Bay, Texas.AAPG Bulletin, 2007, 91(7):981-1003.
[8] ZENG H L, TUCKER F H. High-frequency sequence stratigraphy from seismic sedimentology:Applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana. AAPG Bulletin, 2004, 88(2):153-174.
[9] POSAMENTIER H W, DAVIES R J, CARTWRIGHT R A, et al. Seismic geomorphology:An overview//DAVIES R J,POSAMENTIER H W, WOOD L J, et al. Seismic geomorphology:Applications to hydrocarbon exploration and production. Special Publications of The Geological Society of London, 2007, 277:1-14.
[10] ZENG H L, BACKUS M M. Interpretive advantages of 90 degreesphase wavelets:Part 1-Modeling. Geophysics, 2005, 70(3):C7-C15.
[11] ZENG H L, BACKUS M M. Interpretive advantages of 90 degrees-phase wavelets:Part 2-Seismic applications. Geophysics, 2005, 70(3):C17-C24.
[12] ZENG H L, BACKUS M M, BARROW K T, et al. Stratal slicing, Part Ⅰ:Realistic 3-D seismic model. Geophysics, 1998, 63(2):502-513.
[13] ZENG H L, HENRY S C, RIOLA J P. Stratal slicing, Part Ⅱ:Real seismic data. Geophysics, 1998, 63(2):514-522.
[14] ZENG H L. Seismic imaging for seismic geomorphology beyond the seabed:Potentials and challenges//DAVIES R J, POSAMENTIER H W, WOOD H W, et al. Seismic geomorphology:Applications to hydrocarbon exploration and production. Special Publications of The Geological Society of London, 2007, 277:15-28.
[15] 刘化清, 苏明军, 倪长宽, 等. 薄砂体预测的地震沉积学研究方法. 岩性油气藏, 2018, 30(2):1-11. LIU H Q, SU M J, NI C K, et al. Thin bed prediction from interbeded background:Revised seismic sedimentological method. Lithologic Reservoirs, 2018, 30(2):1-11.
[16] POSAMENTIER H W, KOLLA V, 刘化清. 深水浊流沉积体系综述.沉积学报, 2019, 37(5):880-903. POSAMENTIER H W, KOLLA V, LIU H Q. An overview of deep-water turbidite deposition. Acta Sedimentologica Sinica, 2019, 37(5):880-903.
[17] WOOD L J, MIZE-SPANSKY K L. Quantitative seismic geomorphology of a Quaternary leveed-channel system, offshore eastern Trinidad and Tobago, northeastern South America. AAPG Bulletin, 2015, 93(1):101-125.
[18] POSAMENTIER H W, KOLLA V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 2003, 3:367-388.
[19] POSAMENTIER H W. Seismic geomorphology:Imaging elements of depositional systems from shelf to deep basin using 3D seismic data:Implications for exploration and development. Geological Society London Memoirs, 2004, 29(1):11-24.
[20] ZENG H L. Predicting geometry and stacking pattern of thin beds by interpreting geomorphology and waveforms using sequential stratal-slices in the wheeler domain. Interpretation, 2015, 3(3):SS49-SS64.
[21] 黄清华, 陈春瑞, 王平在, 等. 松辽盆地晚白垩世生物演化与古湖泊缺氧事件.微体古生物学报, 1998, 15(4):417-425. HUANG H Q, CHEN C R, WANG P Z, et al. The late Cretaceous bio-evolution and anoxic events in the ancient lake in the Songliao Basin. Acta Micropalaeontologica Sinica, 1998, 15(4):417-425.
[22] POULSEN C J, TABOR C, WHITE J D. Long-term climate forcing by atmospheric oxygen concentrations. Science, 2015, 348(6240):1238-1241.
[23] 贾建亮, 刘昭君, ACHIM B, 等. 松辽盆地嫩江组油页岩发育控制因素, 地球科学——中国地质大学学报, 2014, 39(2):174-186. JIA J L, LIU Z J, ACHIM B,et al. Major factors controlling formation of oil shale in Nenjiang Formation of Songliao Basin. Earth Science-Journal of China University of Geosciences, 2014, 39(2):174-186.
[24] POSAMENTIER H W, WALKER R G. Deep-water turbidites and submarine fans. SEPM Special Publication, 2006, 84:397-520.
[25] CALLOW R H T, KNELLER B, DYKSTRA M, et al. Physical, biological, geochemical and sedimentological controls on the ichnology of submarine canyon and slope channel systems. Marine and Petroleum Geology, 2014, 54:144-166.
[26] 庞雄, 朱明, 柳保军, 等.南海北部珠江口盆地白云凹陷深水区重力流沉积机理. 石油学报, 2014, 35(4):646-653. PANG X, ZHU M, LIU B J, et al. The mechanism of gravity flow deposition in Baiyun Sag deep water area of the northern South China Sea. Acta Petrolei Sinica, 2014, 35(4):646-653.
[27] 卜范青, 张旭, 陈国宁.尼日尔三角洲盆地重力流沉积模式及储层特征:以AKPO油田为例. 西安石油大学学报(自然科学版), 2017, 32(1):64-70. BU F Q, ZHANG X, CHEN G N. Gravity flow depositional mode and reservoir characteristics of Niger Delta Basin:Taking AK-PO Oilfield as an example. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(1):64-70.
[1] 符勇, 李忠诚, 万谱, 阙宜娟, 王振军, 吉雨, 黄礼, 罗静兰, 鲍志东. 三角洲前缘滑塌型重力流沉积特征及控制因素——以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208.
[2] 曹思佳, 孙增玖, 党虎强, 曹帅, 刘冬民, 胡少华. 致密油薄砂体储层预测技术及应用实效——以松辽盆地敖南区块下白垩统泉头组为例[J]. 岩性油气藏, 2021, 33(1): 239-247.
[3] 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11.
[4] 梁志凯, 李卓, 李连霞, 姜振学, 刘冬冬, 高凤琳, 刘晓庆, 肖磊, 杨有东. 松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏, 2020, 32(6): 22-35.
[5] 杨文杰, 胡明毅, 苏亚拉图, 刘昌, 元懿, 李金池. 松辽盆地苏家屯次洼初始裂陷期扇三角洲沉积特征[J]. 岩性油气藏, 2020, 32(4): 59-68.
[6] 张少龙, 闫建平, 唐洪明, 孙红, 王敏, 董政. 致密碎屑岩气藏可压裂性测井评价方法及应用——以松辽盆地王府断陷登娄库组为例[J]. 岩性油气藏, 2018, 30(3): 133-142.
[7] 刘化清, 苏明军, 倪长宽, 洪忠, 崔向丽, 胡凯峰, 李政阳, 毛俊丽. 薄砂体预测的地震沉积学研究方法[J]. 岩性油气藏, 2018, 30(2): 1-11.
[8] 樊奇, 田继军, 樊太亮, 冯烁, 葛旭, 成赛男. 松辽盆地四方坨子地区上白垩统姚家组浅水三角洲实例分析[J]. 岩性油气藏, 2018, 30(2): 39-49.
[9] Carlos Zavala, 潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏, 2018, 30(1): 1-18.
[10] 张闻亭,潘树新,刘震华,张丽萍,李伟,王巍. 地震沉积学在坳陷湖盆滩坝砂体预测中的应用———以酒西盆地Y区块间泉子段为例[J]. 岩性油气藏, 2016, 28(6): 109-116.
[11] 孙雨,董毅明,王继平,马世忠,于利民,闫百泉. 松辽盆地红岗北地区扶余油层储层单砂体分布模式[J]. 岩性油气藏, 2016, 28(4): 9-15.
[12] 张继红,郭鑫. 聚合物与葡北油田储层孔隙结构适应性研究[J]. 岩性油气藏, 2016, 28(4): 101-105.
[13] 常少英,张先龙,刘永福,刘炜博,余异志,史红岭 . 薄层砂体识别的地震沉积学研究——以 TZ12 井区为例[J]. 岩性油气藏, 2015, 27(6): 72-77.
[14] 刘苍宇,辛仁臣. ΔlgR 方法在深水沉积物层序分析中的应用----以松辽盆地古龙凹陷古57 井青山口组为例[J]. 岩性油气藏, 2015, 27(5): 30-36.
[15] 熊 冉,杨 存,罗宪婴,乔占峰,曹 鹏. 地震沉积学在白云岩油藏隔夹层预测中的应用----以塔里木盆地英买 32 区块蓬莱坝组为例[J]. 岩性油气藏, 2015, 27(5): 116-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[5] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[6] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[7] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[8] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[9] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[10] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .