岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 1–12.doi: 10.12108/yxyqc.20210301

• 油气地质 •    下一篇

坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例

刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽   

  1. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2020-07-01 修回日期:2020-09-20 发布日期:2021-06-03
  • 第一作者:刘化清(1969—),男,博士,教授级高级工程师,主要从事沉积学、地震沉积学及石油地质综合研究方面的工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:liu_hq@petrochina.com.cn。
  • 基金资助:
    国家重大科技专项“岩性地层油气藏成藏规律、关键技术及目标评价”(编号:2017ZX05001-003)资助

Seismic reflection and sedimentary characteristics of deep-water gravity flow channels on the slope of lacustrine depression basin: First member of Nenjiang Formation in LHP area, Songliao Basin

LIU Huaqing, FENG Ming, GUO Jingyi, PAN Shuxin, LI Hailiang, HONG Zhong, LIANG Sujuan, LIU Caiyan, XU Yunze   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2020-07-01 Revised:2020-09-20 Published:2021-06-03

摘要: 松辽盆地湖盆深水区重力流沉积广泛发育,由于资料分辨率低的限制,以往对其时空演化、内部结构方面的认识不清。基于高精度三维地震资料,利用90°相位转换、地层切片、光照显示等技术,研究了LHP地区下白垩统嫩一段湖盆深水斜坡上发育的重力流水道的地震特征以及水道的内部结构。结果表明:①嫩一段沉积时期,本区坡降为0.5‰~1.0‰,发育早、晚2套共9条迥然不同的水道系统。早期水道E-I处于整个重力流水道系统的下游近末端,为非限制性水道,宽度小于40 m,广泛发育决口分流水道,对下伏早期沉积侵蚀弱。晚期水道A-D处于重力流水道系统的中段,为限制性水道,其宽度为50~370 m,在曲流环发育部位宽度可达500 m,这类水道的下切深度可达20 m,剖面形态为U或V型,局部发育2~5 m高的天然堤。发育早、晚2套不同的水道系统可能与构造持续沉降导致盆地斜坡区的坡降变化有关。②坡降与水道曲率、深度与宽度之间均呈良好的正相关关系。③水道中细砂岩、粉砂岩包裹在优质烃源岩当中,具有形成岩性油气藏的良好条件,是今后重要的勘探领域。

关键词: 湖盆深水斜坡, 重力流水道, 地震沉积学, 地震地貌学, 水道结构参数, 嫩江组, 松辽盆地

Abstract: Multiple deep-water slope channels have been observed within the lacustrine Songliao Basin, northeastern China. To understandthe spatial-temporal evolution and internal structures of these channels,techniques including 90° phase rotation,stratal slicing,opacity stacks and illumination were used to study the seismic characteristics and internal structure of gravity flow channels developed on the deep-water slope of lacustrine basin of Lower Cretaceous Nen 1 member in LHP area. The results show that: (1)Nine channels within the 50 km2 LHP area were developed in Nen 1 member of the Late Cretaceous Nenjiang Formation. The depositional setting was a sublacustrine slope characterized by a gradient of 0.5‰ - 1.0‰.(2) Based on morphology,the channels were grouped into two channel systems based on size and degree of associated erosion:small meandering channels characterized by sinuosity of 1.03-1.17,which developed early and were commonly less than 40 m wide. Erosional confinement was minimal and distal avulsions were common. These channels can be described as relatively unconfined,lying down-slope of large gravity-flow systems.(3)Larger meandering channels with sinuosity of 1.04-1.45 and widths up to 500 m,were characterized by greater erosion with maximum erosional valley relief of 20 m. These channels were sufficiently large so that cross profiles could be evaluated,revealing U/V shaped section morphology. Avulsions were uncommon and levees were observed locally. These channels likely lie within the central part of associated gravity-flow systems.(4)Morphological statistics suggest that channel slope and sinuosity,depth and width are positively correlated.(5)Well data from neighboring area indicate that the channel fills were characterized by predominantly silt/fine sandstones with thickness of 10-20 m. These reservoir-prone deposits were bracketed in good quality source rocks making them favorable hydrocarbon exploration targets.(6)The Late Cretaceous global anoxic event possibly caused the abnormal climate(frequent flooding events)and then the frequent gravity flows in the Nen 1 member of lacustrine basin. The continuous subsidence increased the gradient of the paleo-lake and subsequently caused the geomorphology difference between the channels A-D and E-I.

Key words: sublacustrine slope, gravity flow channels, seismic sedimentology, seismic geomorphology, channel structure parameters, Nenjiang Formation, Songliao Basin

中图分类号: 

  • TE121.3
[1] 冯志强, 张顺, 解习农, 等. 松辽盆地嫩江组大型陆相坳陷湖盆湖底水道的发现及其石油地质意义. 地质学报, 2006, 80(6):1226-1233. FENG Z Q, ZHANG S, XIE X N, et al. Discovery of a large-scale lacustrine subaqueous channel in the Nenjiang Formation of the Songliao Basin and its implication on petroleum geology. Acta Geologica Sinica, 2006, 80(6):1226-1233.
[2] 潘树新, 刘化清, ZAVALA C, 等.大型坳陷湖盆异重流成因的水道-湖底扇系统:以松辽盆地白垩系嫩江组一段为例. 石油勘探与开发, 2017, 44(6):911-922. PAN S X, LIU H Q, ZAVALA C, et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin:A case study of Nen 1 member, Cretaceous Nenjiang Formation in the Songliao Basin, NE China. Petroleum Exploration and Development, 2017, 44(6):911-922.
[3] 莫午零, 吴朝东, 张顺. 松辽盆地北部嫩江组沉积物重力流形成机制. 天然气地球科学, 2013, 24(3):555-565. MO W L, WU C D, ZHANG S. Generation mechanism of sediment gravity flow of Nenjiang Formation in the north Songliao Basin. Natural Gas Geoscience, 2013, 24(3):555-565.
[4] FENG Z Q, ZHANG S, CROSSW T A, et al. Lacustrine turbidite channels and fans in the Mesozoic Songliao Basin, China. Basin Research, 2010, 22(1):96-107.
[5] 冯志强, 张顺, 付秀丽. 松辽盆地姚家组-嫩江组沉积演化与成藏响应.地学前缘, 2012, 19(1):78-88. FENG Z Q, ZHANG S, FU X L. Depositional evolution and accumulation response of Yaojia-Nenjiang Formation in Songliao Basin. Earth Science Frontiers, 2012, 19(1):78-88.
[6] 萧德铭, 迟元林, 蒙启安, 等.松辽盆地北部向斜区岩性油藏勘探认识与实践. 北京:石油工业出版社, 2005:1-65. XIAO D M, CHI Y L, MENG Q A, et al. Understanding and practice of lithologic reservoir exploration in syncline area of northern Songliao Basin. Beijing:Petroleum Industry Press, 2005:1-65.
[7] ZENG H L, LOUCKS R G, BROWN L F. Mapping sedimentdispersal patterns and associated systems tracts in fourth-and fifth-order sequences using seismic sedimentology:Example from Corpus Christi Bay, Texas.AAPG Bulletin, 2007, 91(7):981-1003.
[8] ZENG H L, TUCKER F H. High-frequency sequence stratigraphy from seismic sedimentology:Applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana. AAPG Bulletin, 2004, 88(2):153-174.
[9] POSAMENTIER H W, DAVIES R J, CARTWRIGHT R A, et al. Seismic geomorphology:An overview//DAVIES R J,POSAMENTIER H W, WOOD L J, et al. Seismic geomorphology:Applications to hydrocarbon exploration and production. Special Publications of The Geological Society of London, 2007, 277:1-14.
[10] ZENG H L, BACKUS M M. Interpretive advantages of 90 degreesphase wavelets:Part 1-Modeling. Geophysics, 2005, 70(3):C7-C15.
[11] ZENG H L, BACKUS M M. Interpretive advantages of 90 degrees-phase wavelets:Part 2-Seismic applications. Geophysics, 2005, 70(3):C17-C24.
[12] ZENG H L, BACKUS M M, BARROW K T, et al. Stratal slicing, Part Ⅰ:Realistic 3-D seismic model. Geophysics, 1998, 63(2):502-513.
[13] ZENG H L, HENRY S C, RIOLA J P. Stratal slicing, Part Ⅱ:Real seismic data. Geophysics, 1998, 63(2):514-522.
[14] ZENG H L. Seismic imaging for seismic geomorphology beyond the seabed:Potentials and challenges//DAVIES R J, POSAMENTIER H W, WOOD H W, et al. Seismic geomorphology:Applications to hydrocarbon exploration and production. Special Publications of The Geological Society of London, 2007, 277:15-28.
[15] 刘化清, 苏明军, 倪长宽, 等. 薄砂体预测的地震沉积学研究方法. 岩性油气藏, 2018, 30(2):1-11. LIU H Q, SU M J, NI C K, et al. Thin bed prediction from interbeded background:Revised seismic sedimentological method. Lithologic Reservoirs, 2018, 30(2):1-11.
[16] POSAMENTIER H W, KOLLA V, 刘化清. 深水浊流沉积体系综述.沉积学报, 2019, 37(5):880-903. POSAMENTIER H W, KOLLA V, LIU H Q. An overview of deep-water turbidite deposition. Acta Sedimentologica Sinica, 2019, 37(5):880-903.
[17] WOOD L J, MIZE-SPANSKY K L. Quantitative seismic geomorphology of a Quaternary leveed-channel system, offshore eastern Trinidad and Tobago, northeastern South America. AAPG Bulletin, 2015, 93(1):101-125.
[18] POSAMENTIER H W, KOLLA V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 2003, 3:367-388.
[19] POSAMENTIER H W. Seismic geomorphology:Imaging elements of depositional systems from shelf to deep basin using 3D seismic data:Implications for exploration and development. Geological Society London Memoirs, 2004, 29(1):11-24.
[20] ZENG H L. Predicting geometry and stacking pattern of thin beds by interpreting geomorphology and waveforms using sequential stratal-slices in the wheeler domain. Interpretation, 2015, 3(3):SS49-SS64.
[21] 黄清华, 陈春瑞, 王平在, 等. 松辽盆地晚白垩世生物演化与古湖泊缺氧事件.微体古生物学报, 1998, 15(4):417-425. HUANG H Q, CHEN C R, WANG P Z, et al. The late Cretaceous bio-evolution and anoxic events in the ancient lake in the Songliao Basin. Acta Micropalaeontologica Sinica, 1998, 15(4):417-425.
[22] POULSEN C J, TABOR C, WHITE J D. Long-term climate forcing by atmospheric oxygen concentrations. Science, 2015, 348(6240):1238-1241.
[23] 贾建亮, 刘昭君, ACHIM B, 等. 松辽盆地嫩江组油页岩发育控制因素, 地球科学——中国地质大学学报, 2014, 39(2):174-186. JIA J L, LIU Z J, ACHIM B,et al. Major factors controlling formation of oil shale in Nenjiang Formation of Songliao Basin. Earth Science-Journal of China University of Geosciences, 2014, 39(2):174-186.
[24] POSAMENTIER H W, WALKER R G. Deep-water turbidites and submarine fans. SEPM Special Publication, 2006, 84:397-520.
[25] CALLOW R H T, KNELLER B, DYKSTRA M, et al. Physical, biological, geochemical and sedimentological controls on the ichnology of submarine canyon and slope channel systems. Marine and Petroleum Geology, 2014, 54:144-166.
[26] 庞雄, 朱明, 柳保军, 等.南海北部珠江口盆地白云凹陷深水区重力流沉积机理. 石油学报, 2014, 35(4):646-653. PANG X, ZHU M, LIU B J, et al. The mechanism of gravity flow deposition in Baiyun Sag deep water area of the northern South China Sea. Acta Petrolei Sinica, 2014, 35(4):646-653.
[27] 卜范青, 张旭, 陈国宁.尼日尔三角洲盆地重力流沉积模式及储层特征:以AKPO油田为例. 西安石油大学学报(自然科学版), 2017, 32(1):64-70. BU F Q, ZHANG X, CHEN G N. Gravity flow depositional mode and reservoir characteristics of Niger Delta Basin:Taking AK-PO Oilfield as an example. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(1):64-70.
[1] 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[2] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[3] 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45.
[4] 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34.
[5] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[6] 杜长鹏. 松辽盆地莺山-双城断陷白垩系致密火山岩天然气成藏条件及主控因素[J]. 岩性油气藏, 2023, 35(4): 115-124.
[7] 刘宗堡, 李雪, 郑荣华, 刘化清, 杨占龙, 曹松. 浅水三角洲前缘亚相储层沉积特征及沉积模式——以大庆长垣萨北油田北二区萨葡高油层为例[J]. 岩性油气藏, 2022, 34(1): 1-13.
[8] 常少英, 刘玲利, 崔钰瑶, 王锋, 宋明星, 穆晓亮. 浅水三角洲薄砂层地震沉积表征技术——以准噶尔盆地芳草湖地区清水河组为例[J]. 岩性油气藏, 2022, 34(1): 139-147.
[9] 冯雪, 高胜利, 刘永涛, 王秀珍. 鄂尔多斯盆地陇东地区延长组三角洲前缘前积结构特征[J]. 岩性油气藏, 2021, 33(6): 48-58.
[10] 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11.
[11] 符勇, 李忠诚, 万谱, 阙宜娟, 王振军, 吉雨, 黄礼, 罗静兰, 鲍志东. 三角洲前缘滑塌型重力流沉积特征及控制因素——以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208.
[12] 曹思佳, 孙增玖, 党虎强, 曹帅, 刘冬民, 胡少华. 致密油薄砂体储层预测技术及应用实效——以松辽盆地敖南区块下白垩统泉头组为例[J]. 岩性油气藏, 2021, 33(1): 239-247.
[13] 梁志凯, 李卓, 李连霞, 姜振学, 刘冬冬, 高凤琳, 刘晓庆, 肖磊, 杨有东. 松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏, 2020, 32(6): 22-35.
[14] 杨文杰, 胡明毅, 苏亚拉图, 刘昌, 元懿, 李金池. 松辽盆地苏家屯次洼初始裂陷期扇三角洲沉积特征[J]. 岩性油气藏, 2020, 32(4): 59-68.
[15] 张少龙, 闫建平, 唐洪明, 孙红, 王敏, 董政. 致密碎屑岩气藏可压裂性测井评价方法及应用——以松辽盆地王府断陷登娄库组为例[J]. 岩性油气藏, 2018, 30(3): 133-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .