岩性油气藏 ›› 2018, Vol. 30 ›› Issue (3): 133–142.doi: 10.12108/yxyqc.20180315

• 技术方法 • 上一篇    下一篇

致密碎屑岩气藏可压裂性测井评价方法及应用——以松辽盆地王府断陷登娄库组为例

张少龙1, 闫建平1,2, 唐洪明1, 孙红3, 王敏4, 董政5   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 西南石油大学 天然气地质四川省重点实验室, 成都 610500;
    3. 中国石油吉林油田分公司 勘探开发研究院, 吉林 松原 138000;
    4. 中国石化胜利油田分公司勘探开发研究院, 山东 东营 257015;
    5. 中国石油集团川庆钻探工程有限公司 测井公司, 重庆 400021
  • 收稿日期:2017-11-25 修回日期:2018-01-12 出版日期:2018-05-21 发布日期:2018-05-21
  • 第一作者:张少龙(1994-),男,西南石油大学在读硕士研究生,研究方向为测井地质学。地址:(610500)四川省成都市西南石油大学地球科学与技术学院。Email:kylin0924@163.com
  • 通信作者: 闫建平(1980-),男,博士,副教授,主要从事测井地质学及岩石物理学方面的教学与科研工作。Email:yanjp_tj@163.com
  • 基金资助:
    国家自然科学基金项目“页岩气储层纳米尺度非均质性研究”(编号:51674211)、四川省科技厅应用基础研究计划项目“泥页岩地层周期及高分辨率沉积旋回测井识别研究”(编号:2015JY0200)、油气藏地质及开发工程国家重点实验室(西南石油大学)开放课题“裂缝-基质相互作用和页岩油气开采的基础研究”(编号:PLN201702)及中国石油吉林油田分公司勘探开发研究院项目“王府断陷碎屑岩致密气测井评价”(编号:JS2015-W-13-JZ)联合资助

Logging fracturing evaluation for tight clastic gas reservoir and its application: a case from Denglouku Formation in Wangfu fault depression, Songliao Basin

ZHANG Shaolong1, YAN Jianping1,2, TANG Hongming1, SUN Hong3, WANG Min4, DONGZheng5   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Sichuan Key Laboratory of Natural Gas Geology, Southwest Petroleum University, Chengdu 610500, China;
    3. Research Institute of Exploration and Development, PetroChina Jilin Oilfield Company, Songyuan 138000, Jilin, China;
    4. Research Institute of Exploration and Development, Shengli Oilfield Company, Sinopec, Dongying 257015, Shandong, China;
    5. Logging Division of Chuanqing Drilling Engineering Ltd Co., CNPC, Chongqing 400021, China
  • Received:2017-11-25 Revised:2018-01-12 Online:2018-05-21 Published:2018-05-21

摘要: 松辽盆地王府断陷登娄库组致密碎屑岩气藏隔夹层发育,具有多套气水旋回,压裂开发难度较大。为了实现高效生产,利用登娄库组岩心测试、偶极横波及常规测井等资料,采用层次分析法确定了储层可压裂性敏感参数及各敏感参数权重,并在可压裂级别划分的基础上,建立了针对隔夹层发育的致密碎屑岩气藏薄储层可压裂高度预测方法。研究表明:王府断陷登娄库组致密薄储层可压裂性评价的敏感参数有脆性矿物含量、脆性指数、杨氏模量和泊松比,且脆性矿物含量高、脆性指数大、杨氏模量高、泊松比低的储层段往往可压裂性较好;当综合压裂系数Icr> 0.55时,储层压裂级别为Ⅰ级,适合压裂开发;利用本文建立的方法预测C11井登娄库组压裂高度效果较好,当压裂压力为33.5 MPa时,目的层段压裂高度为7.125 m,且不会造成出水,预测结果与实际压裂结果相符合。研究成果为王府断陷登娄库组及相同类型致密气藏的有效开发提供了技术依据。

关键词: 高凝油, 微生物采油技术, 嗜热脂肪地芽孢杆菌, 嗜热脱氮地芽孢杆菌, 铜绿假单胞菌

Abstract: Tight clastic gas reservoir of Denglouku Formation in Wangfu fault depression,Songliao Basin, is characterized by well-developed interlayers, multiple sets of gas water cycles and great difficulty in fracturing deve lopment. In order to overcome these difficulties for efficient production,combined with the data of core analysis, dipole shear wave and conventional logging,analytic hierarchy process was used to determine the parameters which are sensitive to reservoir fracturing property and their weight. The prediction method of fracturing height for tight clastic gas reservoir with interlayer well-developed was established after dividing fracturing grade. The results show that the sensitive parameters of fracturing evaluation for the tight and thin reservoirs of Denglouku Formation in Wangfu fault depression are brittle mineral content,brittleness index, Young's modulus and Poisson's ratio. Reservoirs with high content of brittle minerals,large brittleness index,large Young's modulus and low Poisson' ratio often have good fracturing property. When the comprehensive fracturing coefficient is greater than 0.55,the reservoir fracturing grade is grade I,which is suitable for fracturing development. There is a good ap plication effect on predicting the fracturing height of Denglouku Formation in well C11 by this method. The fractur ing height of the target zone is 7.125 m without water in the exploration process when the fracturing pressure is 33.5 MPa. The prediction results are in accordance with the actual fracturing results. The research results provide a technical basis for the effective exploitation of tight gas reservoirs.

Key words: high-pour point oil, microbial enhanced oil recovery, Geobacillus stearothermophilus, Geobacillus thermodenitrificans, Pseudomonas aeruginosa

中图分类号: 

  • TE37
[1] 闫建平, 崔志鹏, 耿斌, 等.四川盆地龙马溪组与大安寨段泥页岩差异性分析.岩性油气藏, 2016, 28(4):16-23. YAN J P, CUI Z P, GENG B, et al. Differences of shale between Longmaxi Formation and Da'anzhai member in Sichuan Basin. Lithologic Reservoirs, 2016, 28(4):16-23.
[2] 曹跃, 刘延哲, 陈义国, 等. 鄂尔多斯盆地东韩油区延长组长7-长9油气成藏条件及主控因素. 岩性油气藏, 2018, 30(1):30-38. CAO Y, LIU Y Z, CHEN Y G, et al. Hydrocarbon accumulation conditions and main controlling factors of Chang 7-Chang 9 oil reservoirs of Yanchang Formation in Donghan region, Ordos Basin. Lithologic Reservoirs, 2018, 30(1):30-38.
[3] 张宝收, 鲁雪松, 孙雄伟, 等. 塔里木盆地迪北致密砂岩气藏储层物性下限研究. 岩性油气藏, 2015, 27(1):81-88. ZHANG B S, LU X S, SUN X W, et al. Study on the lower limit of physical properties of tight sandstone gasreservoirs in Dibei area, Tarim Basin. Lithologic Reservoirs, 2015, 27(1):81-88.
[4] 闫建平, 温丹妮, 李尊芝, 等.基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法——以东营凹陷南斜坡沙四段为例.地球物理学报, 2016, 59(4):1543-1552. YAN J P, WEN D N, LI Z Z, et al. The quantitative evaluation method of low permeable sandstone pore structure basedon nuclear magnetic resonance(NMR)logging. Chinese Journal of Geophysics, 2016, 59(4):1543-1552.
[5] CHONG K K, GRIESERB, JARIPATKE O, et al. A completions roadmap to shale-play development:a review of successful approaches toward shale-play stimulation in the last two decades. SPE 130369, 2010.
[6] BARNHOOM A, PRIMARINI M, HOUBEN M. Fracturing and brittleness index analyses of shales. EGU Geophysical Research Abstracts, 2016, 18:5869.
[7] 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法. 地学前缘, 2012, 19(5):356-363. TANG Y, XING Y, LI L Z, et al. Influence factors and evaluation methods of the gas shale fracability. Earth Science Frontier, 2012, 19(5):356-363.
[8] 司马立强, 温丹妮, 闫建平, 等.泥页岩储层可压裂性分析及压裂高度预测方法研究.测井技术, 2015, 39(5):622-627. SIMA L Q, WEN D N, YAN J P, et al. Fracturing hierarchy analysis and fracturing height prediction method in shale reservoirs. Well Logging Technology, 2015, 39(5):622-627.
[9] BREYER J A, ALSLEBEN H, ENDERLIN M B. Predicting fracability in shale reservoirs. AAPG Annual Convention and Exhibition, Houston, Texas, USA., 2011.
[10] 隋丽丽, 杨永明, 杨文光, 等.胜利油田东营凹陷区页岩可压裂性评价. 煤炭学报, 2015, 40(7):1588-1594. SUI L L, YANG Y M, YANG W G, et al. Comprehensive evaluation of shale fracability in Dongying subsidence zone of Shengli oil field. Journal of China Coal Society, 2015, 40(7):1588-1594.
[11] 王冠民, 熊周海, 张婕.岩性差异对泥页岩可压裂性的影响分析.吉林大学学报(地球科学版), 2016, 46(4):1080-1089. WANG G M, XIONG Z H, ZHANG J. The impact of lithology differences to shale fractuting. Journal of Jilin University(Earth Science Edition), 2016, 46(4):1080-1089.
[12] 赵金洲, 许文俊, 李勇明, 等. 页岩气储层可压性评价新方法. 天然气地球科学, 2015, 26(6):1165-1172. ZHAO J Z, XU W J, LI Y M, et al. A new method for fracability evaluation of shale-gas reservoirs. Natural Gas Geoscience, 2015, 26(6):1165-1172.
[13] 孙建孟, 韩志磊, 秦瑞宝, 等.致密气储层可压裂性测井评价方法.石油学报, 2015, 36(1):74-80. SUN J M, HAN Z L, QIN R B, et al. Log evaluation method of fracturing performance in tight gas reservoir. Acta Petrolei Sinica, 2015, 36(1):74-80.
[14] 杜书恒, 关平, 师永民, 等. 低渗透砂岩储层可压裂性新判据. 地学前缘, 2017, 24(2):257-264. DU S H, GUAN P, SHI Y M, et al. New fracturing criterion on the low permeability sandstone reservoir. Earth Science Frontiers, 2017, 24(2):257-264.
[15] 彭成勇, 刘书杰, 李扬, 等.砂岩储层可压裂性评价方法研究. 科学技术与工程, 2014, 14(20):205-209. PENG C Y, LIU S J, LI Y, et al. Fracability evaluation of sandstone reservoirs. Science Technology and Engineering, 2014, 14(20):205-209.
[16] 刘之的, 李高仁, 张伟杰, 等. 致密储层可压裂性测井评价方法研究. 测井技术, 2017, 41(2):205-210. LIU Z D, LI G R, ZHANG W J, et al. On evaluation method of fracturing tight reservoir using log data. Well Logging Technology, 2017, 41(2):205-210.
[17] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 2010, 37(6):641-653. ZOU C N, DONG D Z, WANG S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in china. Petroleum Exploration and Development, 2010, 37(6):641-653.
[18] 黄军平, 张智盛, 杨占龙, 等. 致密岩石矿物组分含量及脆性指数多元回归定量预测. 新疆石油地质, 2016, 37(3):346-351. HUANG J P, ZHANG Z S, YANG Z L, et al. Quantitative prediction of mineral component content and brittleness index in tight rocksbased on multivariate regression analysis. Xinjiang Petroleum Geology, 2016, 37(3):346-351.
[19] CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture treatment design. SPE 115769, 2008.
[20] WU H L, LI N, LAN CL, et al. Standard spectrum measurement and simulation of elemental capture spectroscopy log. Applied Geophysics, 2013, 10(1):109-116.
[21] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 2007, 91(4):475-499.
[22] 许文俊, 李勇明, 赵金洲, 等. 基于常规测井的致密砂岩储层体积压裂适应性评价——以吉林油田H井为例. 油气藏评价与开发, 2016, 6(1):62-66. XU W J, LI Y M, ZHAO J Z, et al. Volume fracturing adaptability evaluation in tight sandstone reservoir by conventional logging-taking well H in Jilin oilfield as an example. Reservoir Evaluation and Development, 2016, 6(1):62-66.
[23] RICKMAN R, MULLEN M, PETREE, et al. A practical use of shale petrophysics for stimulation design optimization:All shale plays are not clones of the Barnett Shale. SPE 115258, 2008.
[24] KUMAR V, SONDERGELD C H, RAI C S. Nano to macro mechanical characterization of shale. SPE 159804, 2012.
[25] AOUDIA K, MISKIMINS J L, HARRIS NB, et al. Statistical analysis of the effects of mineralogy on rock mechanical properties of the Woodford Shale and the associated impacts for hydraulic fracture treatment design. The 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium, American Rock Mechanics Association, 2010.
[26] 杨秀娟, 张敏, 闫相祯. 基于声波测井信息的岩石弹性力学参数研究. 石油地质与工程, 2008, 22(4):39-42. YANG X J, ZHANG M, YAN X Z. Study on acoustic loggingbased rock elasticity parameters. Petroleum Geology and Engineering, 2008, 22(4):39-42.
[27] 张立刚. 松辽盆地深层火成岩破碎机理及破岩效率评价. 大庆:东北石油大学, 2014. ZHANG L G. Research on the igneous rock crushing mechanism and efficiency in deep reservoir of Songliao Basin. Daqing:Northeast Petroleum University, 2014.
[28] 谭廷栋.天然气勘探中的测井技术. 北京:石油工业出版社, 1994:144-145. TAN T D. Well logging technology in natural gas exploration. Beijing:Petroleum Industry Press, 1994:144-145.
[29] 李敬功. 利用常规测井资料计算气藏横波速度. 岩性油气藏, 2007, 19(2):67-70. LI J G. Using conventional well logging data to calculate the shear wave velocity of gas reservoir. Lithologic Reservoir, 2007, 19(2):67-70.
[30] 王利娟, 刘向君, 韩林, 等. 基于声波时差的弹性模量、泊松比实验研究. 西南石油大学学报(自然科学版), 2007, 29(增刊1):19-21. WANG L J, LIU X J, HAN L, et al. The experimental study of elastic modulus and poisson ratio based on the sonic time difference. Journal of Southwest Petroleum University(Nature Science Edition), 2007, 29(Suppl 1):19-21.
[31] 孙玉凯, 郑雷清. 基于常规测井资料的横波时差估算方法及应用. 新疆石油地质, 2009, 30(4):521-522. SUN Y K, ZHENG L Q. Method for S-wave moveout calculation and application based on conventional well logging information. Xinjiang Petroleum Geology, 2009, 30(4):521-522.
[32] 邓雪, 李家铭, 曾浩健, 等.层次分析法权重计算方法分析及其应用研究. 数学的实践与认识, 2012, 42(7):93-100. DENG X, LI J M, ZENG H J, et al. Research on computation methods of AHP wight vector and its applications. Mathematics in Practice and Theory, 2012, 42(7):93-100.
[33] 章成广, 李维彦, 樊小意, 等. 用全波列测井资料预测地层破裂压力的应用研究. 工程地球物理学报, 2004, 1(2):120-124. ZHANG C G, LI W Y, FAN X Y, et al. Theapplication study of predicating fracturing pressure with full wavetrain acoustic logging data. Chinese Journal of Engineering Geophysics, 2004, 1(2):120-124.
[1] 窦松江, 李炼民, 石德佩. 高凝油油藏自流掺稀冷采新技术与实践[J]. 岩性油气藏, 2018, 30(4): 127-132.
[2] 王小通, 向龙斌, 张艺馨. 辽河高凝油微生物采油菌剂研究及应用评价[J]. 岩性油气藏, 2017, 29(5): 162-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .