岩性油气藏 ›› 2017, Vol. 29 ›› Issue (5): 162–168.doi: 10.3969/j.issn.1673-8926.2017.05.020

• 石油工程 • 上一篇    

辽河高凝油微生物采油菌剂研究及应用评价

王小通1, 向龙斌2, 张艺馨3   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国地质大学(武汉)工程学院, 武汉 430074;
    3. 密苏里科技大学罗拉分校, 密苏里州 罗拉 65401
  • 收稿日期:2016-12-21 修回日期:2017-02-15 出版日期:2017-09-21 发布日期:2017-09-21
  • 第一作者:王小通(1987-),男,中国石油勘探开发研究院在读博士研究生,研究方向为微生物提高原油采收率及微生物技术应用。地址:(100083)北京市海淀区学院路20号中国石油勘探开发研究院。Email:jacker_orange@126.com。
  • 通信作者: 向龙斌(1964-),男,博士,教授,主要从事石油勘探开发与资源型企业管理方面的教学与研究工作。Email:xianglb@cug.edu.cn。
  • 基金资助:
    国家高技术研究发展计划(863计划)项目“中低温油藏微生物定向激活与模拟技术研究”(编号:2013AA064402)资助

Microorganism preparation and application evaluation on microbial enhanced high-pour point oil recovery in Liaohe Oilfield

WANG Xiaotong1, XIANG Longbin2, ZHANG Yixin3   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China;
    3. Missouri University of Science and Technology at Rolla, Rolla 65401, Missouri, U.S.A
  • Received:2016-12-21 Revised:2017-02-15 Online:2017-09-21 Published:2017-09-21

摘要: 针对高凝油含蜡高、凝固点高、流动性差及开采难度大的问题,选用铜绿假单胞菌配合嗜热脂肪地芽孢杆菌和嗜热脱氮地芽孢杆菌,采用四组分分析法和饱和烃气相色谱法等方法开展了微生物提高高凝油采收率菌剂研究和应用评价。结果表明:菌种对原油四组分存在选择性降解,降解率为23.0%~42.3%,同时菌种可以将高凝油中长碳链饱和烃降解为短碳链烃类,wnC21-)/wnC22+)值和wnC21nC22)/wnC28+nC29)值增大0.33~0.57;铜绿假单胞菌发酵液表面张力从72.21mN/m降低至26.81mN/m;嗜热脂肪地芽孢杆菌与嗜热脱氮地芽孢杆菌2种芽孢杆菌乳化高凝油的E24值分别为70.6%和82.3%;基于嗜热脂肪地芽孢杆菌、嗜热脱氮地芽孢杆菌和铜绿假单胞菌3种细菌性能设计的兼容本源微生物的复合微生物采油菌剂可使高凝油黏度降低63.86%,凝固点降低6℃。物理模拟驱油实验表明:该微生物复合菌剂可在中渗(200mD)及低渗(50mD)条件下使高凝油采收率提高6.46%~8.48%。6口油井的微生物吞吐采油试验证明该微生物复合菌剂性能稳定,可使高凝油采收率大幅提高,具有良好的工业应用前景。

关键词: 高分辨率层序地层学, 基准面, 冲积扇, 馆陶组, 辽河坳陷

Abstract: The high pour-point oil is characterized by high proportion of wax,high freezing point and low fluidity, which make it difficult for development. To solve this problem,one strain of P.aeruginosa and two strains of Geobacillus were selected for microbial enhance high-pour point oil recovery research and characteristics assessment through four components analysis and the saturated hydrocarbon GC spectrum analysis. The results show that four components of oil selectively degrade by the strains:degradation rate is 23.0%-42.3%,meaning while the long carbon chain in the oil is shortened,the value of w(nC21-)/w(nC22+) and w(nC21 + nC22)/w(nC28 + nC29) increased by 0.33-0.57. The strains'capability of producing bio-surfactant was evaluated:the surface tension of P.aeruginosa fermentation broth decreases from 72.21 mN/m to 26.81 mN/m. The two strains of Geobacillus emulsify high-pour point oil with an emulsification index of 70.6% and 82.3% respectively. Based on characteristics of these three microorganisms,a novel compound microorganism preparation which is compatible with indigenous microorganisms was successfully designed. The oil viscosity decreases by 63.86% and the oil freezing point is lowered by 6℃ by this microbial preparation. Through water flooding simulation test,the preparation enhances high-pour point oil recovery by 6.46%-8.48% in the middle permeability(200 mD) and low permeability(50 mD). Afield test involved 6 wells was conducted in Liaohe Oilfield,which demonstrates the stability and high efficiency of this novel compound microorganism preparation in enhancing high freezing point oil recovery.

Key words: high-resolution sequence stratigraphy, base level, alluvial fan, Guantao Formation, Liaohe Depression

中图分类号: 

  • TE357.9
[1] 冯有良. 大民屯凹陷沙四段-沙三段层序地层格架及岩性油气藏预测.岩性油气藏,2008,20(4):14-19. FENG Y L. Sequence stratigraphy framework and lithologic reservoirs prediction of the third and fourth members of Shahejie Formation,Damintun Depression. Lithologic Reservoirs,2008, 20(4):14-19.
[2] 谢文彦,李晓光,陈振岩,等. 辽河油区稠油及高凝油勘探开发技术综述.石油学报,2007,28(4):145-150. XIE WY,LI X G,CHEN Z Y,et al. Review of exploration and development technologies for heavy oil and high pour-point oil in Liaohe oil region. Acta Petrolei Sinica,2007,28(4):145-150.
[3] 梁明亮,王作栋,郑建京,等. 辽河断陷烃源岩有机地球化学特征. 岩性油气藏,2014,26(4):110-116. LIANGML,WANG Z D,ZHENG J J,et al. Organic geochemical characteristics of hydrocarbon source rocks in Liaohe fault depression. Lithologic Reservoirs,2014,26(4):110-116.
[4] 孟庆学,王玉臣. 高凝油及其开采技术. 石油科技论坛,2006(5):45-49. MENG Q X,WANG Y C. High pour-point oil development technologies. Oil Forum,2006(5):45-49.
[5] 程静波. 吉林油田高含蜡稠油油藏有效开发方式研究. 岩性油气藏,2011,23(4):119-123. CHEN J B. Study on effective development mode of high wax oil reservoir with high wax content in Jilin Oilfield. Lithologic Reservoirs,2011,23(4):119-123.
[6] 姚振杰,马永晶,金志,等. 采出液回注方式对驱油效果的影响研究——以辽河油田J区块为例. 岩性油气藏,2016,28(3):133-136. YAO Z J,MA Y J,JIN Z J,et al. Influence of produced liquid reinjection way on oil displacement effect:a case study from J block in Liaohe Oilfield. Lithologic Reservoirs,2016,28(3):133-136.
[7] 于天忠,张建国,叶双江,等. 辽河油田曙一区杜84块超稠油油藏水平井热采开发技术研究. 岩性油气藏,2011,23(6):114-119. YU T Z,ZHANG J G,YE S J,et al. Study on thermal exploitation technology of horizontal well in super heavy oil reservoir of Du 84 block in Liaohe Oilfield. Lithologic Reservoirs,2011, 23(6):114-119.
[8] FUJIWARA K,SUGAI Y,YAZAWA N,et al. Biotechnological approach for development of microbial enhanced oil recovery technique. Studies in Surface Science & Catalysis,2004,151(4):405-445.
[9] 王惠,卢渊,伊向艺. 国内外微生物采油技术综述. 大庆石油地质与开发,2003,22(5):49-52. WANG H,LU Y,YI X Y. Review of domestic and international microbial enhanced oil recovery technology. Petroleum Geology & Oilfield Development in Daqing,2003,22(5):49-52.
[10] 王惠,卢渊,伊向艺,等. 微生物采油技术的进展. 新疆石油地质,2004,25(3):329-332. WANG H,LU Y,YI X Y,et al. Review of domestic and international microbial enhanced oil recovery technology. Xinjiang Petroleum Geology,2004,25(3):329-332.
[11] 汪卫东. 微生物采油技术研究及试验. 石油钻采工艺,2012, 34(1):107-113. WANG W D. Laboratory research and field trials of microbial oil recovery technique. Oil Drilling and Production Technology, 2012,34(1):107-113.
[12] 宋春玲. 对于石油开采中微生物采油技术应用的探讨. 中国石油和化工标准与质量,2011(8):83. SONG C L. Investigation on the application of microbial enhanced oil recovery in oil exploitation. China Petroleum and Chemical Standard and Quality,2011(8):83.
[13] 汪卫东. 我国微生物采油技术现状及发展前景. 石油勘探与开发,2002,29(6):87-90. WANG W D. Current situation and development prospects of microbiological recovery technology in China. Petroleum Exploration and Development,2002,29(6):87-90.
[14] 张毅. 三次采油技术的研究现状与未来发展. 化学工程与装备,2011(4):119-120. ZHANG Y. Research status and future development of the three oil extraction technology. Chemical Engineering & Equipment, 2011(4):119-120.
[15] 张林,王彦,梁岗. 微生物采油技术发展综述. 化学工程与装备,2011(6):159-160. ZHANG L,WANG Y,LIANG G. Review of microbial enhanced oil recovery technology development. Chemical Engineering & Equipment,2011(6):159-160.
[16] ABBASI H,HAMEDI M M,LOTFABAD T B,et al. Biosurfactant -producing bacterium,pseudomonas aeruginosa MA01 isolated from spoiled apples:physicochemical and structural characteristics of isolated biosurfactant. Journal of Bioscience and Bioengineering,2012,113(2):211-219.
[17] JAIN R M,MODY K,MISHRAA,et al. Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater. Carbohydrate Polymers,2012,87(3):2320-2326.
[18] KHOPADE A,BIAO R,LIU X,et al. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination,2012,285:198-204.
[19] ZHANG G L,WUYT,QIAN X P,et al. Biodegradation of crude oil by pseudomonas aeruginosa in the presence of rhamnolipids. Journal of Zhejiang University Science B,2005,6(8):725-730.
[20] 刘清坤,王君,李国强,等. 嗜热地芽孢杆菌DM-2烃降解特性研究. 环境科学,2008,29(12):3554-3560. LIU Q K,WANG J,LI G Q,et al. Characterization of a thermophilic Geobacillus strain DM-2 degrading hydrocarbons. Environmental Science,2008,29(12):3554-3560.
[21] LIU Y C,ZHOU T T,ZHANG J,et al. Molecular characterization of the alkB gene in the thermophilic Geobacillus sp. strain MH-1. Research in Microbiology,2009,160(8):560-566.
[22] MEINTANIS C,CHALKOU K I,KORMAS K A,et al. Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation,2006,17(2):3-9.
[23] SHREVE G S,INGUVA S,GUNNAM S. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.MolecularMarine Biology and Biotechnology, 1995,4(4):331-337.
[24] SUTHAR H,HINGURAO K,DESAI A,et al. Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. Journal of Microbiological Methods,2008, 75(2):225-230.
[1] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[2] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[3] 张昌民, 张祥辉, ADRIAN J. Hartley, 冯文杰, 尹太举, 尹艳树, 朱锐. 分支河流体系分类初探[J]. 岩性油气藏, 2023, 35(4): 1-15.
[4] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[5] 方锐, 蒋裕强, 陈沁, 曾令平, 罗宇卓, 周亚东, 杜磊, 杨广广. 川东北五宝场地区侏罗系沙溪庙组沉积特征[J]. 岩性油气藏, 2023, 35(2): 47-58.
[6] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[7] 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151.
[8] 刘阳平, 吴博然, 于忠良, 余成林, 王立鑫, 尹艳树. 辫状河砂岩储层三维地质模型重构技术——以冀东油田高尚堡区块新近系馆陶组为例[J]. 岩性油气藏, 2022, 34(4): 159-170.
[9] 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103.
[10] 张本健, 田云英, 曾琪, 尹宏, 丁熊. 四川盆地西北部三叠系须三段砂砾岩沉积特征[J]. 岩性油气藏, 2021, 33(4): 20-28.
[11] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[12] 赵青峰, 张建国, 康文君, 王思琦, 姜在兴, 杜克锋, 黄昌武. 辽河坳陷西部凹陷沙四上亚段震积岩特征及地质意义[J]. 岩性油气藏, 2019, 31(5): 24-33.
[13] 刘丽. 埕岛油田馆陶组曲流河砂体叠置模式[J]. 岩性油气藏, 2019, 31(1): 40-48.
[14] 张建坤, 吴鑫, 方度, 王方鲁, 高文中, 陈小军. 马头营凸起馆二段窄薄河道砂体地震识别[J]. 岩性油气藏, 2018, 30(6): 89-97.
[15] 印森林, 陈恭洋, 陈玉琨, 吴小军. 砂砾岩储层孔隙结构模态控制下的剩余油分布——以克拉玛依油田七东1区克下组为例[J]. 岩性油气藏, 2018, 30(5): 91-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .