岩性油气藏 ›› 2022, Vol. 34 ›› Issue (6): 141–151.doi: 10.12108/yxyqc.20220612

• 地质勘探 • 上一篇    

秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素

任梦怡, 胡光义, 范廷恩, 范洪军   

  1. 中海油研究总院有限责任公司, 北京 100028
  • 收稿日期:2021-08-23 修回日期:2022-06-07 发布日期:2022-11-09
  • 作者简介:任梦怡(1991-),女,博士,工程师,主要从事油气田地质与开发方面的研究工作。地址:(100028)北京市朝阳区太阳宫路6号中海油研究总院。Email:renmy4@coori.com.cn。
  • 基金资助:
    中海油研究总院有限公司综合科研项目“储层不连续界限预测及应用研究:三角洲沉积储层类型”(编号: YXKY-2019-ZY-08)资助

Composite sand body architecture and controlling factors of the lower Minghuazhen Formation of Neogene in northern Qinhuangdao 32-6 oilfield

REN Mengyi, HU Guangyi, FAN Tingen, FAN Hongjun   

  1. CNOOC Research Institute Co., Ltd., Beijing 100028, China
  • Received:2021-08-23 Revised:2022-06-07 Published:2022-11-09

摘要: 通过测井、优势地震属性融合、频谱属性趋势分析等方法,对秦皇岛32-6油田北区新近系明化镇组下段Ⅱ油组(NmⅡ)复合砂体储层构型特征进行了研究,并厘清了基准面旋回对复合砂体构型的控制作用。研究结果表明:①秦皇岛32-6油田北区新近系明化镇组下段复合砂体主要为点坝-决口扇沉积,渗流屏障主要为河漫滩-废弃河道沉积,按测井相和砂体结构韵律划分内部结构,点坝砂体头部—中部为箱形,点坝尾部砂体为钟形,决口扇砂体主要为漏斗形,河漫滩和废弃河道主要表现为尖峰形和低幅齿形;复合砂体外部叠置样式包括孤立型、紧密侧叠型、疏散侧叠型和堆叠型。②研究区NmⅡ油组沉积早期,河道呈交织条带状分布,主要沉积点坝与决口扇,堆叠式和紧密侧叠型复合砂体广泛发育;沉积晚期河道演化为单一条带状,决口扇零星分布于河道凸岸,复合砂体规模变小,主要为疏散侧叠型和孤立型,河漫滩和废弃河道规模变大,成为复合砂体间的渗流屏障。③研究区长期—中期旋回中,构造活动等异旋回因素通过调整可容空间和沉积物供给,影响复合砂体外部形态和叠置样式;短期旋回通过控制沉积物类型和水动力等自旋回因素影响复合砂体内部结构。

关键词: 复合砂体构型, 点坝, 决口扇, 废弃河道, 曲流河沉积, 基准面旋回, 明化镇组, 新近系, 秦皇岛32-6油田

Abstract: Through logging,dominant seismic attribute fusion, spectrum attribute trend analysis and other methods, the reservoir architecture characteristics of the composite sand bodies in the second oil group(NmⅡ)of the lower Minghuazhen Formation of Neogene in northern Qinhuangdao 32-6 oilfield were studied,and the control effect of base-level cycle on the composite sand body architecture was clarified. The results shows that: (1)The composite sand bodies of the NmⅡ in northern Qinhuangdao 32-6 oilfield are mainly point bar and crevasse splay deposits,and the seepage barrier is mainly floodplain and abandoned channel deposits. According to logging facies and sand body structure rhythm,the internal structure of composite sand bodies is divided into box shape in the head and middle of point bar,bell shape in the end of point bar,funnel shape in crevasse splay,peak shape and low-amplitude tooth shape in floodplain and abandoned channel. The external stacking patterns of the composite sand bodies include isolated type,tight lateral stacking type,scattered lateral stacking type and stacking type. (2)In the early stage of NmⅡ,the intertwined channel mainly deposited point bar and crevasse splay. Sand bodies of tight side-stacking type and stacking type were widely developed. In the late stage of NmⅡ,the channel evolved into single band shape,and the crevasse splay was sporadically distributed on the convex bank of the channel. The scale of the composite sand bodies became smaller,mainly scattered lateral stacking type and isolated type,and the floodplain and abandoned channel became the seepage barrier between the composite sand bodies. (3)In long-term to middle-term cycles in the study area,heterocyclic factors such as tectonic activities affect the external morphology and stacking of composite sand bodies by adjusting the accommodation space and sediment supply,while in short-term cycles, the internal structure of sand bodies is affected by autogenetic cycle such as sediment types and hydrodynamics.

Key words: composite sand body architecture, point bar, crevasse splay, abandoned channel, meandering river deposits, based-level cycle, Minghuazhen Formation, Neogene, Qinhuangdao 32-6 oilfield

中图分类号: 

  • TE122.2
[1] 薛培华. 河流点坝相储层模式概论[M]. 北京:石油工业出版社, 1991. XUE Peihua. An introduction to the reservoir model of point-bar facies in rivers[M]. Beijing:Petroleum Industry Press, 1991.
[2] 岳大力, 吴胜和, 谭河清, 等. 曲流河古河道储层构型精细解剖:以孤东油田七区西馆陶组为例[J]. 地学前缘, 2008, 15(1):101-109. YUE Dali, WU Shenghe, TAN Heqing, et al. An anatomy of paleochannel reservoir architecture of meandering river reservoir:A case study of Guantao Formation,the west 7th block of Gudong oilfield[J]. Earth Science Frontiers, 2008, 15(1):101- 109.
[3] 于兴河. 油气储层地质学基础[M]. 北京:石油工业出版社, 2009. YU Xinghe. Fundamentals of petroleum reservoir geology[M]. Beijing:Petroleum Industry Press, 2009.
[4] MIALL A D. Architectural-element analysis:A new method of facies analysis applied to fluvial deposits[J]. Earth Science Reviews, 1985, 22(4):261-308.
[5] MIALL A D. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic timeslice analysis[J]. AAPG Bulletin, 2002, 86(7):1201-1216.
[6] 吴胜和, 纪友亮, 岳大力, 等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报, 2013, 19(1):12-22. WU Shenghe, JI Youliang, YUE Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1):12-22.
[7] 胡光义, 范廷恩, 梁旭, 等. 河流相储层复合砂体构型概念体系、表征方法及其在渤海油田开发中的应用探索[J]. 中国海上油气, 2018, 3(1):89-98. HU Guangyi, FAN Tingen, LIANG Xu, et al. Concept system and characterization method of compound sandbody architecture in fluvial reservoir and its application exploration in development of Bohai oilfield[J]. China Offshore Oil and Gas, 2018, 3(1):89-98.
[8] 石书缘, 胡素云, 刘伟, 等. 基于野外资料和Google Earth影像的地质信息识别与提取方法:以塔里木盆地西克尔奥陶系古岩溶露头为例[J]. 海相油气地质, 2016, 21(3):55-64. SHI Shuyuan, HU Suyun, LIU Wei, et al. Identification and acquirement methods of geological information based on integrating outcrops and google earth satellite images:A case at an Ordovician Paleokarst outcrop in Xekar, Tarim Basin[J]. Marine Origin Petroleum Geology, 2016, 21(3):55-64.
[9] 王冬冬, 宋亚开, 郭宇鹏. 基于Google Earth软件对曲流河点坝的研究[J]. 中国锰业, 2017, 35(2):141-143. WANG Dongdong, SONG Yakai, GUO Yupeng. A google earthbased study on point bar of meandering river[J]. China's Manganese Industry, 2017, 35(2):141-143.
[10] 吴胜和, 岳大力, 刘建民, 等. 地下古河道储层构型的层次建模研究[J]. 中国科学D辑, 2008, 38(增刊1):111-121. WU Shenghe, YUE Dali, LIU Jianmin, et al. Study on hierarchical modeling of reservoir configuration in under-ground ancient river[J]. Science in China(Series D), 2008, 38(Suppl 1):111- 121.
[11] 束青林. 孤岛油田馆陶组河流相储层隔夹层成因研究[J]. 石油学报, 2006, 27(3):100-103. SHU Qinglin. Interlayer characterization of fluvial reservoir in Guantao Formation of Gudao oilfield[J]. Acta Petrolei Sinica, 2006, 27(3):100-103.
[12] 吴小红, 韦阿娟, 王应斌, 等. 渤海海域QHD32-6亿吨级大油田的形成条件分析[J]. 地质科技情报, 2015, 34(1):112- 117. WU Xiaohong, WEI Ajuan, WANG Yingbin, et al. Formation conditions analysis of QHD32-6 oilfield in Bohai Sea[J]. Geological Science and Technology Information, 2015, 34(1):112- 117.
[13] 赵春明, 胡景双, 霍春亮, 等. 曲流河与辫状河沉积砂体连通模式及开发特征:以渤海地区秦皇岛32-6油田为例[J]. 油气地质与采收率, 2009, 16(6):88-91. ZHAO Chunming, HU Jingshuang, HUO Chunliang, et al. Sandbody interconnectivity architecture and development characteristics of meandering river and braided river deposits:A case study of Qinhuangdao 32-6 oilfield, Bohai area[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(6):88-91.
[14] 李伟, 岳大力, 胡光义, 等. 分频段地震属性优选及砂体预测方法:秦皇岛32-6油田北区实例[J]. 石油地球物理勘探, 2017, 52(1):121-130. LI Wei, YUE Dali, HU Guangyi, et al. Frequency-segmented seismic attribute optimization and sandbody distribution prediction:An example in north Block, Qinghuangdao 32-6 oilfield[J]. Oil Geophysical Prospecting, 2017, 52(1):121-130.
[15] 周新茂, 胡永乐, 高兴军, 等. 曲流河单砂体精细刻画在老油田二次开发中的应用[J]. 新疆石油地质, 2010, 31(3):284- 287. ZHOU Xinmao, HU Yongle, GAO Xingjun, et al. Application of fine description of single sand body in meandering river to old oilfield redevelopment[J]. Xinjiang Petroleum Geology, 2010, 31(3):284-287.
[16] 刘波, 赵翰卿, 王良书, 等. 古河流废弃河道微相的精细描述[J]. 沉积学报, 2001, 19(3):394-398. LI Bo, ZHAO Hanqing, WANG Liangshu, et al. The detailed description of ancient fluvial abandoned channel micro-facies[J]. Acta Sedimentologica Sinica, 2001, 19(3):394-398.
[17] 刘丽. 埕岛油田馆陶组曲流河砂体叠置模式[J]. 岩性油气藏, 2019, 31(1):40-48. LIU Li. Sandbody superimposed pattern of meandering river facies of Guantao Formation in Chengdao Oilfield[J]. Lithologic Reservoirs, 2019, 31(1):40-48.
[18] 任秋月. 地震属性提取方法的研究与应用[D]. 成都:成都理工大学, 2019. REN Qiuyue. Research and application of the extraction method of seismic attributes[D]. Chengdu:Chengdu University of Technology, 2019.
[19] 邓猛, 邵英博, 赵军寿, 等. 渤海A油田明化镇组下段河-坝砂体储层构型及剩余油分布[J]. 岩性油气藏, 2020, 32(6):154- 163. DENG Meng, SHAO Yingbo, ZHAO Junshou, et al. Reservoir architecture and remaining oil distribution of channel-bar:A case from lower Minghuazhen Formation in Bohai A oilfield[J]. Lithologic Reservoirs, 2020, 32(6):154-163.
[20] 胡光义, 陈飞, 范廷恩, 等. 基于复合砂体构型样式的河流相储层细分对比方法[J]. 大庆石油地质与开发, 2017, 36(2):12-18. HU Guangyi, CHEN Fei, FAN Tingen, et al. Subdividing and comparing method of the fluvial facies reservoirs based on the complex sandbody architectures[J]. Petroleum Geology and Oilfield Development in Daqing, 2017, 36(2):12-18.
[21] 刘涛. 渤海湾盆地东部古近系-新近系沉积与物源特征研究[D]. 北京:中国地质大学(北京), 2020. LIU Tao. Sedimentology and provenance analysis of PaleogeneNeogene strata in the eastern Bohai Bay Basin[D]. Beijing:China University of Geosciences(Beijing), 2020.
[22] 任梦怡, 江青春, 刘震, 等. 南堡凹陷柳赞地区沙三段层序结构及其构造响应[J]. 岩性油气藏,2020, 32(3):93-103. REN Mengyi, JIANG Qingchun, LIU Zhen, et al. Sequence architecture and structural response of the third member of Shahejie Formation in Liuzan area, Nanpu Sag[J]. Lithologic Reservoirs, 2020, 32(3):93-103.
[23] 唐欢欢, 谢锐杰, 刘威. 应用INPEFA技术在源内层系中划分层序和识别高能砂:以川西坳陷新场构造带须五段为例[J]. 重庆科技学院学报(自然科学版), 2021, 23(3):49-53. TANG Huanhuan, XIE Ruijie, LIU Wei. Sequence division and identification of high energy sand in source strata based on inpefa technology:Taking the fifth member of Xujiahe Formation in Xinchang structural belt in Western Sichuan Depression as an example[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2021, 23(3):49-53.
[24] 王航, 杨海风, 黄振, 等. 基于可容纳空间变化的河流相演化新模式及其控藏作用:以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5):73-83. WANG Hang, YANG Haifeng, HUANG Zhen, et al. A new model for sedimentary evolution of fluvial faices based on accommodation space change and its impact on hydrocarbon accumulation:A case study of Kenli-A structure in Laizhouwan Depression[J]. Lithologic Reservoirs, 2020, 32(5):73-83.
[1] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[2] 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161.
[3] 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42-52.
[4] 周东红, 谭辉煌, 张生强. 渤海海域垦利6-1油田新近系复合河道砂体地震描述技术[J]. 岩性油气藏, 2022, 34(4): 13-21.
[5] 牛成民, 杜晓峰, 王启明, 张参, 丁熠然. 渤海海域新生界大型岩性油气藏形成条件及勘探方向[J]. 岩性油气藏, 2022, 34(3): 1-14.
[6] 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103.
[7] 易志凤, 张尚锋, 王雅宁, 徐恩泽, 赵韶华, 王玉瑶. 差异曲率下的曲流河点坝砂体定量表征——以黄河源区白河现代沉积为例[J]. 岩性油气藏, 2022, 34(1): 34-42.
[8] 杨丽莎, 陈彬滔, 马轮, 史忠生, 薛罗, 王磊, 史江龙, 赵艳军. 陆相湖盆坳陷期源—汇系统的要素特征及耦合关系——以南苏丹Melut盆地北部坳陷新近系Jimidi组为例[J]. 岩性油气藏, 2021, 33(3): 27-38.
[9] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[10] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[11] 王德英, 于娅, 张藜, 史盼盼. 渤海海域石臼坨凸起大型岩性油气藏成藏关键要素[J]. 岩性油气藏, 2020, 32(1): 1-10.
[12] 张建兴, 林承焰, 张宪国, 孙志峰, 陈家昀. 基于储层构型与油藏数值模拟的点坝储层剩余油分布研究[J]. 岩性油气藏, 2017, 29(4): 146-153.
[13] 孟 昊,钟大康,朱筱敏,刘自亮,廖纪佳,张修强 . 鄂尔多斯盆地陇东地区延长组 LSC3 层序格架与沉积相[J]. 岩性油气藏, 2016, 28(1): 77-87.
[14] 徐中波,康 凯,申春生,何 滨,林国松,李 林. 渤海海域 L 油田新近系明化镇组下段与馆陶组储层沉积微相研究[J]. 岩性油气藏, 2015, 27(5): 161-166.
[15] 万传治, 王 鹏, 薛建勤, 苏雪迎, 周 刚, 苟迎春 . 柴达木盆地柴西地区古近系—新近系致密油勘探潜力分析[J]. 岩性油气藏, 2015, 27(3): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!