岩性油气藏 ›› 2022, Vol. 34 ›› Issue (6): 1–18.doi: 10.12108/yxyqc.20220601

• 地质勘探 • 上一篇    下一篇

柴达木盆地油气勘探、地质认识新进展及重要启示

李国欣1, 石亚军2, 张永庶1, 陈琰1, 张国卿1, 雷涛1   

  1. 1. 中国石油青海油田分公司, 甘肃 敦煌 736202;
    2. 中国石油勘探开发研究院西北分院, 兰州 730020
  • 收稿日期:2022-05-09 修回日期:2022-05-12 出版日期:2022-11-01 发布日期:2022-11-09
  • 第一作者:李国欣(1971-),男,硕士,教授级高级工程师,主要从事油气勘探开发研究与管理工作。地址:(736202)甘肃省敦煌市七里镇青海油田机关1号楼。Email:guoxinli@petrochina.com.cn
  • 通信作者: 石亚军(1977-),男,博士,高级工程师,主要从事沉积学和油气地质勘探等方面的研究工作。Email:shi_yj@petrochina.com.cn。
  • 基金资助:
    国家科技重大专项“柴达木复杂构造区油气成藏、关键勘探技术与新领域目标优选”(编号: 2016ZX05003-006)与中国石油天然气股份有限公司科技重大专项“柴达木盆地建设高原大油气田勘探开发关键技术研究与应用”(编号: 2016E-01)联合资助

New progress and enlightenment of oil and gas exploration and geological understanding in Qaidam Basin

LI Guoxin1, SHI Yajun2, ZHANG Yongshu1, CHEN Yan1, ZHANG Guoqing1, LEI Tao1   

  1. 1. PetroChina Qinghai Oilfield Company, Dunhuang 736200, Gansu, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2022-05-09 Revised:2022-05-12 Online:2022-11-01 Published:2022-11-09

摘要: 经过几代石油人艰苦卓绝的奋斗,柴达木盆地已建成青藏高原唯一的油气生产基地,成为甘青藏地区经济社会发展的压舱石。通过系统综述近年来柴达木盆地的油气勘探进展和勘探成果,总结了成盆、成烃、成储和成藏规律,指出了未来勘探转型的重要领域和方向。研究结果表明:①自2007年设立科技重大专项以来,尤其“十二五”以来,依托科技创新,支撑昆北断阶、英雄岭构造、阿尔金山前、扎哈泉凹陷等相继发现了亿吨级大油气田,形成了其他盆地鲜见的成烃、成储、成藏等原创性成果。②通过系统梳理和总结“十二五”以来的勘探发现、启示及重要地质认识,提出了未来油气勘探从浅层向深浅结合、从构造向构造-岩性结合、从碎屑岩向多岩性复合、从常规向常规-非常规结合的四大转变,厘定出柴西古近系—新近系页岩油、柴东第四系泥岩生物气、柴北缘深层和柴西古近系多类型岩性等四大勘探领域。③研究成果将推动柴达木盆地油气勘探转型发展和强改造型盆地油气地质理论技术发展,为各类型含油气系统的油气藏勘探持续发现提供重要的支撑。

关键词: 岩性油气藏, 湖相碳酸盐岩, 页岩油, 生物气, 第四系, 古近系, 新近系, 含油气系统, 柴达木盆地

Abstract: After the arduous struggle of several generations, the only oil and gas production base in Tibet Plateau has been built in Qaidam Basin, which has become a ballast for the economic and social development of GansuQinghai-Tibet region. By systematically summarizing the oil and gas exploration progress and exploration results in Qaidam Basin in recent years,the laws of basin formation, hydrocarbon generation, reservoir formation and reservoir accumulation were summarized, and the important fields and directions of exploration transformation in the future were pointed out. The research results show that:(1)Since the establishment of major science and technology projects in 2007,especially since the 12th Five-Year Plan, large oil and gas fields with 100 million ton reserves have been discovered by relying on scientific and technological innovation in Kunbei fault terrace, Yingxiongling structure,Altun Piedmont and Zahaquan Sag, meanwhile,original theories that are rare in other basins about hydrocarbon generation,reservoir formation and hydrocarbon accumulation mechanism were formed.(2)By systematically summarizing the exploration discovery and important geological cognition since the 12th Five-Year Plan,four major changes in future oil and gas exploration were proposed:from shallow to deepshallow combination, from structure to structure-lithology combination, from clastic rocks to multi-lithology combination,and from conventional to conventional and unconventional combination. Four major future fields were determined,including Paleogene-Neogene shale oil in western Qaidam Basin,Quaternary mudstone biogas of eastern Qaidam Basin,deep strata in northern margin of Qaidam Basin and Paleogene multi-lithology in western Qaidam Basin.(3)These research results will promote the transformation and deve-lopment of oil and gas exploration in Qaidam Basin and the development of oil and gas geology theory and technology in strongly reformed basins, and provide important support for the continuous exploration discovery of oil and gas reservoirs in various types of petroleum systems.

Key words: lithologic reservoir, lacustrine carbonate rocks, shale oil, biogas, Quaternary, Paleogene, Neogene, petroleum system, Qaidam Basin

中图分类号: 

  • TE121.1
[1] 付锁堂, 马达德, 陈琰, 等. 柴达木盆地油气勘探新进展[J]. 石油学报, 2016, 37(增刊1):1-10. FU Suotang, MA Dade, CHEN Yan, et al. New advance of petroleum and gas exploration in Qaidam Basin[J]. Acta Petrolei Sinica, 2016, 37(Suppl 1):1-10.
[2] 李国欣, 朱如凯, 张永庶, 等.柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义[J]. 石油勘探与开发, 2022, 49(1):18-31. LI Guoxin, ZHU Rukai, ZHANG Yongshu, et al. Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1):18-31.
[3] 张英, 李剑, 张奎, 等. 柴达木盆地三湖地区第四系生物气源岩中可溶有机质丰度及地质意义[J]. 地质学报, 2007, 81(12):1716-1722. ZHANG Ying, LI Jian, ZHANG Kui, et al. Organic matter abundance in Quaternary source rocks and its application on assessment of biogenic gas in Sanhu lake area, Qaidam Basin[J]. Acta Geologica Sinica, 2007, 81(12):1716-1722.
[4] 林腊梅, 金强. 柴达木盆地北缘和西部主力烃源岩的生烃史[J]. 石油与天然气地质, 2004, 25(6):677-681. LIN Lamei, JIN Qiang. Hydrocarbon generation history of major source rocks in the northern edge and western part of Qaidam Basin[J]. Oil & Gas Geology, 2004, 25(6):677-681.
[5] 刘洛夫, 妥进才, 于会娟, 等. 柴达木盆地北部地区侏罗系烃源岩地球化学特征[J]. 石油大学学报(自然科学版), 2000, 24(1):64-68. LIU Luofu, TUO Jincai, YU Huijuan, et al. Geochemistry of the Jurassic source rocks in the northern areas of Qaidam Basin in China[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2000, 24(1):64-68.
[6] 丁安娜, 王明明, 李本亮, 等. 生物气的形成机理及源岩的地球化学特征:以柴达木盆地生物气为例[J]. 天然气地球科学, 2003, 14(5):402-407. DING Anna, WANG Mingming, LI Benliang, et al. Biogas forming mechanism and geochemical characteristics of its source rocks[J]. Natural Gas Geoscience, 2003, 14(5):402-407.
[7] 关平, 王大锐, 黄第藩. 柴达木盆地东部生物气与有机酸地球化学研究[J]. 石油勘探与开发, 1995, 22(3):41-45. GUAN Ping, WANG Darui, HUANG Difan. Geochemistry of biogas and organic acids in eastern Qaidam Basin[J]. Petroleum Exploration and Development, 1995, 22(3):41-45.
[8] 王万春, 刘文汇, 王国仓, 等. 沉积有机质微生物降解与生物气源岩识别:以柴达木盆地三湖坳陷第四系为例[J]. 石油学报, 2016, 37(3):318-327. WANG Wanchun, LIU Wenhui, WANG Guocang, et al. Biodegradation of depositional organic matter and identification of biogenic gas source rocks:An example from the Sanhu Depression of Qaidam Basin[J]. Acta Petrolei Sinica, 2016, 37(3):318-327.
[9] SHUAI Yanhua, ZHANG Shuichang, PENG Pingan, et al. Occurrence of heavy carbon dioxide of organic origin:Evidence from confined dry pyrolysis of coal[J]. Chemical Geology, 2013, 358:54-60.
[10] 帅燕华, 张水昌, 赵文智, 等. 陆相生物气纵向分布特征及形成机理研究:以柴达木盆地涩北一号为例[J]. 中国科学D辑:地球科学, 2007, 37(1):46-51. SHUAI Yanhua,ZHANG Shuichang,ZHAO Wenzhi,et al. Study on the longitudinal distribution characteristics and formation mechanism of terrestrial biogas:Taking Sebei No. 1 in Qaidam Basin as an example[J]. Science in China Series D:Earth Sciences, 2007, 37(1):46-51.
[11] 石亚军, 杨少勇, 郭佳佳, 等. 柴达木盆地深层油气成矿(藏)条件及有利区带[J]. 中国矿业大学学报, 2020, 49(3):506-522. SHI Yajun, YANG Shaoyong, GUO Jiajia, et al. Petroleum accumulation conditions and favorable exploration plays of deeply buried strata in Qaidam Basin[J]. Journal of China University of Mining & Technology, 2020, 49(3):506-522.
[12] 张斌, 何媛媛, 陈琰, 等. 柴达木盆地西部咸化湖相优质烃源岩地球化学特征及成藏意义[J]. 石油学报, 2017, 38(10):1158-1167. ZHANG Bin, HE Yuanyuan, CHEN Yan, et al. Geochemical characteristics and oil accumulation significance of the high quality saline lacustrine source rocks in the western Qaidam Basin, NW China[J]. Acta Petrolei Sinica, 2017, 38(10):1158-1167.
[13] 吴德云, 张国防. 盐湖相有机质成烃模拟实验研究[J]. 地球化学, 1994, 23(增刊1):173-181. WU Deyun, ZHANG Guofang. Simulation experiment study on hydrocarbon generation from organic matter in saline lake facies rocks[J]. Geochimica, 1994, 23(Suppl 1):173-181.
[14] 李术元, 林世静, 郭绍辉, 等. 矿物质对干酪根热解生烃过程的影响[J]. 石油大学学报(自然科学版), 2002, 26(1):69-71. LI Shuyuan, LIN Shijing, GUO Shaohui, et al. Catalytic effects of minerals on hydrocarbon generation in kerogen degradation[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2002, 26(1):69-71.
[15] 刘德汉, 张惠之, 戴金星, 等. 煤岩显微组分的成烃实验研究与评价[J]. 科学通报, 2000, 45(4):346-352. LIU Dehan, ZHANG Huizhi, DAI Jinxing, et al. Experimental study and evaluation of hydrocarbon generation of coal rock microscopic components[J]. Chinese Science Bulletin, 2000, 45(4):346-352.
[16] 赵长毅, 赵文智, 程克明, 等. 吐哈盆地煤油源岩形成条件与生油评价[J]. 石油学报, 1998, 19(3):21-25. ZHAO Changyi, ZHAO Wenzhi, CHENG Keming, et al. The formation condition of coal acted as oil source rock and assessment of oil generated potential in Turpan-Hami Basin[J]. Acta Petrolei Sinica, 1998, 19(3):21-25.
[17] 冯子辉, 李景坤, 李振广. 大庆探区煤系烃源岩的生烃条件研究[J]. 大庆石油地质与开发, 2002, 21(5):1-4. FENG Zihui, LI Jingkun, LI Zhenguang. A study on hydrocarbon potential of coal-measure source rock in prospect area of Daqing[J]. Petroleum Geology & Oilfield Development in Daqing, 2002, 21(5):1-4.
[18] 陈建平, 赵文智, 秦勇, 等. 中国西北地区侏罗纪煤系油气形成(之一)[J]. 石油勘探与开发, 1998, 25(3):1-5. CHEN Jianping, ZHAO Wenzhi, QIN Yong, et al. Petroleum formation in Jurassic coal bearing basins, northwest China(Part 1)[J]. Petroleum Exploration and Development, 1998, 25(3):1-5.
[19] 刘德汉, 傅家谟, 肖贤明, 等.煤成烃的成因与评价[J].石油勘探与开发, 2005, 32(4):137-141. LIU Dehan, FU Jiamo, XIAO Xianming, et al. Origin and appraisal of coal derived gas and oil[J]. Petroleum Exploration and Development, 2005, 32(4):137-141.
[20] 田光荣, 李红哲, 白亚东, 等. 柴达木盆地侏罗系煤系烃源岩生烃潜力分类评价[J]. 煤田地质与勘探, 2018, 46(5):73-80. TIAN Guangrong, LI Hongzhe, BAI Yadong, et al. Classification and evaluation of the hydrocarbon generation potential of Jurassic coal measure of Qaidam Basin[J]. Coal Geology & Exploration, 2018, 46(5):73-80.
[21] 李洪波, 张敏, 张春明, 等.柴达木盆地西部南区第三系原油成熟度特征[J].石油天然气学报(江汉石油学院学报), 2010, 32(1):27-32. LI Hongbo, ZHANG Min, ZHANG Chunming, et al. The characteristics of thermal maturity of crude oils from Tertiary system in the southwestern part of Qaidam Basin[J]. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2010, 32(1):27-32.
[22] 路俊刚, 姚宜同, 王力, 等. 柴达木盆地跃进斜坡区油源判识与原油勘探方向[J]. 吉林大学学报(地球科学版), 2014, 44(3):730-740. LU Jungang, YAO Yitong, WANG Li, et al. Oil source and mature oil exploration potential of Yuejin slope area in the Qaidam Basin[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3):730-740.
[23] 石亚军, 薛建勤, 马新民, 等. 高原咸化湖盆晚期构造高丰度油藏形成机制:以柴达木盆地英东地区为例[J]. 中国矿业大学学报, 2019, 48(5):1053-1061. SHI Yajun, XUE Jianqin, MA Xinmin, et al. Mechanisms of high abundance hydrocarbon accumulation in neotectonics/late-stage tectonics of plateau saline lacustrine basin:Taking the Yingdong area of Qaidam Basin as an example[J]. Journal of China University of Mining & Technology, 2019, 48(5):1053-1061.
[24] 钱凯, 屈平彦, 宋凯. 古三角洲砂体入湖距离的动力学预测[J]. 沉积学报, 1984, 2(3):82-90. QIAN Kai, QU Pingyan, SONG Kai. Dynamic calculation of the distance of ancient deltaic sandbody entering into lake[J]. Acta Sedimentologica Sinica, 1984, 2(3):82-90.
[25] SHI Yajun, XU Li, HUANG Chenggang, et al. The existence and significance of two kinds of effective reservoirs in deep water area of the western Qaidam Basin[J]. Acta Geologica Sinica (English Edition), 2020, 94(5):1726-1727.
[26] 郭佳佳, 孙国强, 门宏建, 等.柴北缘腹部深层异常高孔-渗储层成因分析[J].沉积学报, 2018, 36(4):777-786. GUO Jiajia, SUN Guoqiang, MEN Hongjian, et al. Genetic analysis of anomalously high porosity zones in deeply buried reservoirs in the west part of northern edge of Qaidam Basin, NW China[J]. Acta Sedimentologica Sinica, 2018, 36(4):777-786.
[27] TAYLOR T R, GILES M R, HATHON L A, et al. Sandstone diagenesis and reservoir quality prediction:Models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8):1093-1132.
[28] 金振奎, 苏奎, 苏妮娜. 准噶尔盆地腹部侏罗系深部优质储层成因[J]. 石油学报, 2011, 32(1):25-31. JIN Zhenkui, SU Kui, SU Nina. Origin of Jurassic deep burial high-quality reservoirs in the central Junggar Basin[J]. Acta Petrolei Sinica, 2011, 32(1):25-31.
[29] 张永庶, 伍坤宇, 姜营海, 等. 柴达木盆地英西深层碳酸盐岩油气藏地质特征[J]. 天然气地球科学, 2018, 29(3):358-369. ZHANG Yongshu, WU Kunyu, JIANG Yinghai, et al. Geological characteristics of deep carbonate hydrocarbon-bearing pool in the western Yingxiongling area in Qaidam Basin[J]. Natural Gas Geoscience, 2018, 29(3):358-369.
[30] 唐勇, 曹剑, 何文军, 等. 从玛湖大油区发现看全油气系统地质理论发展趋势[J]. 新疆石油地质, 2021, 42(1):1-9. TANG Yong, CAO Jian, HE Wenjun, et al. Development tendency of geological theory of total petroleum system:Insights from the discovery of Mahu large oil province[J]. Xinjiang Petroleum Geology, 2021, 42(1):1-9.
[31] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1):14-26. ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1):14-26.
[32] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1):1-10. JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1):1-10.
[33] 张水昌, 梁狄刚, 朱光有, 等. 中国海相油气田形成的地质基础[J]. 科学通报, 2007, 52(增刊1):19-31. ZHANG Shuichang, LIANG Digang, ZHU Guangyou, et al. Geological basis for the formation of marine oil and gas fields in China[J]. Chinese Science Bulletin, 2007, 52(Suppl 1):19-31.
[34] 付锁堂. 柴达木盆地油气勘探潜在领域[J]. 中国石油勘探, 2016, 21(5):1-10. FU Suotang. Potential oil and gas exploration areas in Qaidam Basin[J]. China Petroleum Exploration, 2016, 21(5):1-10.
[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[3] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[4] 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55.
[5] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[6] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[7] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[8] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[9] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[10] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[11] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[12] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[13] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[14] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
[15] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .