岩性油气藏 ›› 2024, Vol. 36 ›› Issue (4): 35–43.doi: 10.12108/yxyqc.20240404

• 地质勘探 • 上一篇    下一篇

吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟

徐田录1, 吴承美1, 张金凤1, 曹爱琼2, 张腾3   

  1. 1. 中国石油新疆油田公司 吉庆油田作业区, 新疆 吉木萨尔 831700;
    2. 新疆准东石油技术有限公司, 新疆 阜康 831511;
    3. 北京远望景盛科技发展有限公司, 北京 100020
  • 收稿日期:2023-06-21 修回日期:2023-07-11 出版日期:2024-07-01 发布日期:2024-07-04
  • 第一作者:徐田录(1986—),男,高级工程师,主要从事非常规储层压裂方面的研究工作。地址:(8317000)新疆昌吉州吉木萨尔县锦绣路吉庆油田作业区。Email:xutl0208@163.com。
  • 基金资助:
    国家科技重大专项“岩性地层油气藏成藏规律、关键技术及目标评价”(编号:2016ZX05001-002)与中国石油集团重大科技专项“陆相中高成熟度页岩油勘探开发关键技术研究与应用”(编号:2019E-2609)联合资助。

Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag

XU Tianlu1, WU Chengmei1, ZHANG Jinfeng1, CAO Aiqiong2, ZHANG Teng3   

  1. 1. Jiqing Oilfield Operation Area, PetroChina Xinjiang Oilfield Company, Jimsar 831700, Xinjiang, China;
    2. Xinjiang Zhundong Petroleum Technology Co., Ltd., Fukang 831511, Xinjiang, China;
    3. Yuanwang Jingsheng Technology (Beijing) Co., Ltd., Beijing 100020, China
  • Received:2023-06-21 Revised:2023-07-11 Online:2024-07-01 Published:2024-07-04

摘要: 综合利用岩心、地震、测井和微地震监测等资料,在天然裂缝模型和地应力模型的约束下,运用页岩储层压裂缝网模拟研究了吉木萨尔凹陷二叠系芦草沟组天然裂缝特征及其对压裂缝网扩展的影响。研究结果表明:①吉木萨尔凹陷二叠系芦草沟组天然裂缝包括层理缝和构造缝,以层理缝为主,数量多、倾角小,裂缝数量平均为 251 条,裂缝面密度为 0.58~1.34 条/m,平均为 0.93 条/m。构造缝倾角为70°~95°,裂缝数量明显少于层理缝,根据形成时间及产状,构造缝可分为Ⅰ类和Ⅱ类构造缝。②研究区最小水平主应力为 50.41~55.22 MPa,最大水平主应力为 53.52~74.43 MPa,有利于水力压裂缝网的延伸,芦草沟组纵向存在应力隔层,最大层间应力差可达 12 MPa,水力压裂时人工裂缝不易穿层。③研究区芦草沟组页岩压裂改造以激活高角度构造缝为主,96.45% 的压裂缝为“T 形”裂缝,而“十字形”和“一字形”压裂缝仅占 2.24% 和 1.21%,芦草沟组压裂缝半缝长度为 70~100 m,高度为 10~30 m,邻近断层时由于缝长过大,易发生井窜。

关键词: 页岩油储层, 水力压裂, 天然裂缝, 层理缝, 构造缝, 压裂扩展模拟, 芦草沟组, 二叠系, 吉木萨尔凹陷

Abstract: Based on core,seismic,logging,and microseismic monitoring data,and under the constraints of natural fracture models and geostress models,the characteristics of natural fractures and their impact on the expansion of fracture networks in Permian Lucaogou Formation in Jimsar Sag were studied through fracture network simulation in shale reservoirs. The results show that:(1)The natural fractures of Permian Lucaogou Formation in Jimsar Sag include bedding fractures and structural fractures,with the bedding fractures as the main type,having a large number and small dip angles. The average number of fractures is 251,and the fracture surface density is 0.58-1.34 per meter,with an average of 0.93 per meter. The dip angle of the structural fractures is 70°-95°,and the number of fractures is significantly less than that of the bedding fractures. According to the formation time and occurrence,the structural fractures can be divided into type Ⅰ and type Ⅱ structural fractures. (2)The minimum horizontal principal stress in the study area is 50.41-55.22 MPa,and the maximum horizontal principal stress is 53.52-74.43 MPa,which is conducive to the extension of hydraulic fracturing network. There are stress barriers in the vertical direction of Lucaogou Formation,and the maximum interlayer stress difference can reach 12 MPa,so it is not easy for the artificial fracture to penetrate the layers during hydraulic fracturing. (3)The fracturing transformation of shale of Lucaogou Formation in the study area is mainly to activate the highangle structural fractures. 96.45% of the fracturing fractures are“T-shaped”,while the“cross-shaped”and “straight -shaped”fractures only account for 2.24% and 1.21%,respectively. The half-length of the fractures of Lucaogou Formation is 70-100 meters,and the height is 10-30 meters. When adjacent to faults,due to the excessive fracture length,well-channeling is prone to occur.

Key words: shale reservoir, hydraulic fracturing, natural fracture, bedding fracture, structural fracture, fracturing extension simulation, Lucaogou Formation, Permian, Jimsar Sag

中图分类号: 

  • TE319
[1] 朱如凯,崔景伟,毛治国,等.地层油气藏主要勘探进展及未来重点领域[J].岩性油气藏,2021,33(1):12-24. ZHU Rukai,CUI Jingwei,MAO Zhiguo,et al. Main exploration progress and future key fields of stratigraphic reservoirs[J]. Lithologic Reservoirs,2021,33(1):12-24.
[2] 李阳,赵清民,吕琦,等.中国陆相页岩油开发评价技术与实践[J].石油勘探与开发,2022,49(5):955-964. LI Yang,ZHAO Qingmin,LYU Qi,et al. Evaluation technology and practice of continental shale oil development in China[J]. Petroleum Exploration and Development,2022,49(5):955-964.
[3] 张治恒,田继军,韩长城,等.吉木萨尔凹陷芦草沟组储层特征及主控因素[J].岩性油气藏,2021,33(2):116-126. ZHANG Zhiheng,TIAN Jijun,HAN Changcheng,et al. Reservoir characteristics and main controlling factors of Lucaogou Formation in Jimsar Sag,Junggar Basin[J]. Lithologic Reservoirs,2021,33(2):116-126.
[4] 李一波,何天双,胡志明,等.页岩油藏提高采收率技术及展望[J].西南石油大学学报(自然科学版),2021,43(3):101-110. LI Yibo,HE Tianshuang,HU Zhiming,et al. A comprehensive review of enhanced oil recovery technologies for shale oil[J]. Journal of Southwest Petroleum University (Science&Technology Edition),2021,43(3):101-110.
[5] 侯冰,常智,武安安,等.吉木萨尔凹陷页岩油密切割压裂多簇裂缝竞争扩展模拟[J].石油学报,2022,43(1):75-90. HOU Bing,CHANG Zhi,WU An'an,et al. Simulation of competitive propagation of multi-fractures on shale oil reservoir multi-clustered fracturing in Jimsar Sag[J]. Acta Petrolei Sinica, 2022,43(1):75-90.
[6] 潘林华,张烨,陆朝辉,等.页岩储层复杂裂缝扩展研究[J].断块油气田,2016,23(1):90-94. PAN Linhua,ZHANG Ye,LU Chaohui,et al. Complex fracture propagation in shale gas reservoir[J]. Fault-Block Oil&Gas Field,2016,23(1):90-94.
[7] 孙景行,曾波,刘俊辰,等.川南深层页岩水力压裂缝网扩展规律数值模拟研究[J].工程地质学报,2022,30(4):1193-1202. SUN Jingxing,ZENG Bo,LIU Junchen,et al. Modeling study on the hydraulic fracturing of deep shale reservoir in southern Sichuan[J]. Journal of Engineering Geology,2022,30(4):1193-1202.
[8] 张永平,魏旭,唐鹏飞,等.松辽盆地古龙页岩油储层压裂裂缝扩展机理与压裂工程技术[J].大庆石油地质与开发,2020, 39(3):170-175. ZHANG Yongping,WEI Xu,TANG Pengfei,et al. Fracture propagating mechanism and fracturing engineering technology in Gulong shale oil reservoirs of Songliao Basin[J]. Petroleum Geology&Oilfield Development in Daqing,2020,39(3):170-175.
[9] 盛广龙,黄罗义,赵辉,等.页岩气藏压裂缝网扩展流动一体化模拟技术[J].西南石油大学学报(自然科学版),2021,43(5):84-96. SHENG Guanglong,HUANG Luoyi,ZHAO Hui,et al. Integrated simulation approach for fracture network propagation and gas flow in Shale gas reservoirs[J]. Journal of Southwest Petroleum University (Science&Technology Edition),2021, 43(5):84-96.
[10] 罗浩渝,陈军,章学岐,等.河控浅水三角洲前缘沉积特征及对岩性油藏的控制:以库车坳陷南斜坡巴西改组为例[J].岩性油气藏,2021,33(5):70-80. LUO Haoyu,CHEN Jun,ZHANG Xueqi,et al. Sedimentary characteristics of fluvial dominated shallow water delta front and its control on lithologic reservoir:A case study of Baxigai Formation in south slope of Kuqa Depression[J]. Lithologic Reservoirs,2021,33(5):70-80.
[11] 何小东,张景臣,王俊超,等.考虑天然裂缝条件下水平井压裂簇间距优化:以吉木萨尔页岩油为例[J].深圳大学学报(理工版),2022,39(2):134-141. HE Xiaodong,ZHANG Jingchen,WANG Junchao,et al. Optimization of fracturing cluster spacing of horizontal wells with natural fractures:Taking Jimusar shale oil as an example[J]. Journal of Shenzhen University (Science and Engineering), 2022,39(2):134-141.
[12] TAHERIA K. Three-dimensional hydro-mecha-nical model of borehole in fractured rock mass using discrete element method[J]. Journal of Natural Gas Science and Engineering,2018,53:263-275.
[13] 邓远,陈轩,覃建华,等.吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J].岩性油气藏,2023, 36(1):136-144. DENG Yuan,CHEN Xuan,QIN Jianhua,et al. Paleogeomorphology and favorable reservoir distribution of the first member of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs,2023,36(1):136-144.
[14] 柳忠泉,曾治平,田继军,等.吉木萨尔凹陷二叠系芦草沟组 "甜点" 成因与分布预测[J].岩性油气藏,2022,34(3):15-28. LIU Zhongquan,ZENG Zhiping,TIAN Jijun,et al. Genesis and distribution prediction of sweet spots of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs,2022,34(3):15-28.
[15] 李亚龙,刘先贵,胡志明,等.页岩储层压裂缝网模拟研究进展[J].石油地球物理勘探,2019,54(2):480-492. LI Yalong,LIU Xiangui,HU Zhiming,et al. Research progress on fracture network simulation in shale reservoirs[J]. Oil Geophysical Prospecting,2019,54(2):480-492.
[16] 徐加祥,丁云宏,杨立峰,等.致密油藏分段多簇压裂水平井复杂缝网表征及产能分析[J].油气地质与采收率,2019,26(5):132-138. XU Jiaxiang,DING Yunhong,YANG Lifeng,et al. Complex fracture network characterization and productivity analysis of multistage fractured horizontal well in tight oil reservoirs[J]. Petroleum Geology and Recovery Efficiency,2019,26(5):132-138.
[17] 张洪,孟选刚,邵长金,等.水平压裂裂缝形成机理及监测:以七里村油田为例[J].岩性油气藏,2018,30(5):138-145. ZHANG Hong,MENG Xuangang,SHAO Changjin,et al. Forming mechanism and monitoring of horizontal hydraulic fracture:A case from Qilicun oilfield[J]. Lithologic Reservoirs,2018, 30(5):138-145.
[18] 陈珂,于志豪,王守毅,等.断层附近非均匀应力场页岩压裂缝网扩展模拟[J].断块油气田,2023,30(2):213-221. CHEN Ke,YU Zhihao,WANG Shouyi,et al. Shale fracture network propagation simulation in non-uniform stress field near fault[J]. Fault-Block Oil&Gas Field,2023,30(2):213-221.
[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[3] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[4] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[5] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[6] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[7] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[8] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[9] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[10] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[11] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[12] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[13] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[14] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[15] 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .