岩性油气藏 ›› 2024, Vol. 36 ›› Issue (4): 98–108.doi: 10.12108/yxyqc.20240409

• 地质勘探 • 上一篇    下一篇

沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测

申有义1,2, 王凯峰3,4, 唐书恒3,4, 张松航3,4, 郗兆栋3,4, 杨晓东1,2   

  1. 1. 自然资源部矿业城市自然资源调查监测与保护重点实验室, 山西 晋中 030600;
    2. 山西省煤炭地质物探测绘院有限公司, 山西 晋中 030600;
    3. 中国地质大学(北京)能源学院, 北京 100083;
    4. 非常规天然气能源地质评价与开发工程北京市重点实验室, 北京 100083
  • 收稿日期:2023-02-28 修回日期:2023-04-24 出版日期:2024-07-01 发布日期:2024-07-04
  • 第一作者:申有义(1982—),男,硕士,高级工程师,主要从事煤炭、煤层气地质与地球物理勘查与研究工作。地址:(030600)山西省晋中市榆次区迎宾西街380号。Email:271009603@qq.com。
  • 通信作者: 唐书恒(1965—),男,博士,教授,博士生导师,主要从事非常规天然气勘探与开发研究。Email:tangsh@cugb.edu.cn。
  • 基金资助:
    NSFC-山西煤基低碳联合基金重点项目“沁水盆地高煤阶煤层气井产能控制因素与增产机理研究”(编号:U1910205)、国家自然科学基金面上项目“煤储层润湿性与气水可动性基础研究”(编号:42272197)和山西省揭榜招标项目“煤层气、致密气、页岩气“三气”综合开发技术与示范”(编号:20201101003)联合资助。

Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin

SHEN Youyi1,2, WANG Kaifeng3,4, TANG Shuheng3,4, ZHANG Songhang3,4, XI Zhaodong3,4, YANG Xiaodong1,2   

  1. 1. Key Laboratory of Monitoring and Protection of Natural Resources in Mining Cities, Ministry of Natural Resources, Jinzhong 030600, Shanxi, China;
    2. Coal Geological Geophysical Exploration Surveying & Mapping Institute of Shanxi Province, Jinzhong 030600, Shanxi, China;
    3. School of Energy Resources, China University of Geosciences(Beijing), Beijing 100083, China;
    4. Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, Beijing 100083, China
  • Received:2023-02-28 Revised:2023-04-24 Online:2024-07-01 Published:2024-07-04

摘要: 沁水盆地煤系页岩气资源丰富,但勘探开发处于初期阶段。基于钻井、测井和地震解释资料,结合有机地球化学与储层物性实验测试数据,通过三维地质建模技术,建立了沁水盆地榆社—武乡区块二叠系山西组底部—太原组上部煤系页岩地质模型,并预测了煤系页岩气“甜点”区。研究结果表明:①沁水盆地榆社—武乡区块石炭系—二叠系煤系地层模型反映了煤系页岩储层的发育主要受控于构造活动,呈“东浅西深、整体连续”的分布格局。②基于序贯指示法建立沉积相模型,指示研究区在太原期—山西期由海陆过渡相转变为近海陆相沉积环境,为稳定优质页岩储层的形成提供了有利的沉积环境。③通过相控属性建模实现了储层参数空间分布模拟和精细表征,泥地比、孔隙度、含气量、总有机碳含量和镜质体反射率的平均值分别为0.57,10.02%,1.21 m3/t,2.18%,2.45%,揭示了研究区煤系页岩较好的储集能力、含气性、有机质丰度和资源潜力,脆性指数模型指示出页岩压裂后的有利区带。④在精细三维地质建模的基础上,将三维网格单元赋值积分,计算研究区二叠系煤系页岩气地质资源量为1 344.98×108 m3,运用层次分析法和模糊评价法预测页岩气“甜点”区,Ⅰ类“甜点”区为地质与工程双重甜点,分布于研究区东北部、中部和西北部局部区域。

关键词: 煤系地层, 页岩气, 地质建模, 储层特征, “甜点”预测, 地质资源量, 二叠系, 榆社—武乡区块, 沁水盆地

Abstract: The coal measures shale gas resources in Qinshui Basin are abundant,but exploration and development are still in the early stages. Based on drilling,well logging,and seismic interpretation data,combined with organic geochemistry and reservoir physical property experimental test data,a three-dimensional geological modeling technique was used to establish a geological model of coal measures shale from the bottom of Shanxi Formation to the upper Taiyuan Formation of Permian in Yushe-Wuxiang block,Qinshui Basin,and“sweet spot”areas of coal measures shale gas were predicted. The results show that:(1)The Carboniferous-Permian coal measure strata model for Yushe-Wuxiang block reflects that the development of coal measures shale reservoirs is mainly controlled by tectonic activities,showing a distribution pattern of“shallow in the east and deep in the west,and overall continuous”.(2)The sedimentary model based on sequential indicator method indicate that the transition from marine-continental transitional facies to nearshore continental facies sedimentary environments during Taiyuan to Shanxi period in the study area,providing a conducive sedimentary environment for the formation of stable and high-quality shale reservoirs.(3)Facies-controlled attribute modeling achieved spatial distribution simulation and fine characterization of reservoir parameters. The average values of mudstone ratio,porosity,gas content,total organic carbon content,and vitrinite reflectance are 0.57,10.02%,1.21 m3/t,2.18% and 2.45%, respectively,revealing the favorable reservoir capacity,gas content,organic matter abundance,and resource potential of coal measures shale. The brittleness index model indicates favorable zones after shale fracturing. (4)On the basis of fine three-dimensional geological modeling,the three-dimensional grids were assigned integrals,and the geological resource of Permian coal measures shale gas in the study area is estimated at 1 344.98×108 m3. Analytical hierarchy process and fuzzy evaluation methods were used to predict“sweet spot” areas of shale gas. Type I“sweet spot”area for shale gas presenting both geological and engineering advantages, predominantly distributed in the northeastern,central,and northwestern parts of the study area.

Key words: coal measures strata, shale gas, geological modeling, reservoir characteristics, “sweet spot”prediction, geological resources, Permian, Yushe-Wuxiang block, Qinshui Basin

中图分类号: 

  • TE122.2
[1] HILL R J,JARVIE D M,ZUMBERGE J,et al. Oil and gas geochemistry and petroleum systems of the Fort Worth Basin[J]. AAPG Bulletin,2007,91(4):445-473.
[2] ROSS D J K,BUSTIN R M. Shale gas potential of the Lower Jurassic Gordondale member,northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology,2007,55(1):51-75.
[3] GASPARIK M,BERTIER P,GENSTERBLUM Y,et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology,2014,123:34-51.
[4] XI Zhaodong,TANG Shuheng,ZHANG Songhang,et al. Controls of marine shale gas accumulation in the eastern periphery of the Sichuan Basin,South China[J]. International Journal of Coal Geology,2022,251:103939.
[5] 邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653. ZOU Caineng,DONG Dazhong,WANG Shejiao,et al. Geological characteristics,formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development,2010,37(6):641-653.
[6] 杨滔,曾联波,聂海宽,等.湘中坳陷海陆过渡相页岩吸附能力及控制因素[J].岩性油气藏,2019,31(2):105-114. YANG Tao,ZENG Lianbo,NIE Haikuan,et al. Adsorption capacity and controlling factors of marine-continental transitional shale in Xiangzhong Depression[J]. Lithologic Reservoirs, 2019,31(2):105-114.
[7] 董大忠,邱振,张磊夫,等.海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J].沉积学报,2021,39(1):29-45. DONG Dazhong,QIU Zhen,ZHANG Leifu,et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica,2021,39(1):29-45.
[8] 李阳阳,李贤庆,张学庆,等.沁水盆地阳泉区块太原组煤系页岩孔隙结构特征[J].现代地质,2021,35(4):1033-1042. LI Yangyang,LI Xianqing,ZHANG Xueqing,et al. Pore structure characteristics of Taiyuan Formation coal measures shale in the Yangquan block of the Qinshui Basin[J]. Geoscience, 2021,35(4):1033-1042.
[9] 包书景,林拓,聂海宽,等.海陆过渡相页岩气成藏特征初探:以湘中坳陷二叠系为例[J].地学前缘,2016,23(1):44-53. BAO Shujing,LIN Tuo,NIE Haikuan,et al. Preliminary study of the transitional facies shale gas reservoir characteristics:Taking Permian in the Xiangzhong depression as an example[J]. Earth Science Frontiers,2016,23(1):44-53.
[10] ZHANG Miao,FU Xuehai. Study of the characteristics of marineterrigenous facies shale from the Permo-Carboniferous system in the Guxian block,southwest Qinshui Basin[J]. Energy&Fuels,2018,32(2):1096-1109.
[11] 罗群,吴安彬,王井伶,等.中国北方页岩气成因类型、成气模式与勘探方向[J].岩性油气藏,2019,31(1):1-11. LUO Qun,WU Anbin,WANG Jingling,et al. Genetic types, generation models,and exploration direction of shale gas in northern China[J]. Lithologic Reservoirs,2019,31(1):1-11.
[12] 杨跃明,张少敏,金涛,等.川南地区二叠系龙潭组页岩储层特征及勘探潜力[J].岩性油气藏,2023,35(1):1-11. YANG Yueming,ZHANG Shaomin,JIN Tao,et al. Characteristics and exploration potential of shale reservoirs of Permian Longtan Formation in southern Sichuan Basin[J]. Lithologic Reservoirs,2023,35(1):1-11.
[13] 秦勇,申建,沈玉林.叠置含气系统共采兼容性:煤系 "三气" 及深部煤层气开采中的共性地质问题[J].煤炭学报,2016, 41(1):14-23. QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14-23.
[14] 王凯峰,唐书恒,张松航,等.柿庄南区块煤层气高产潜力井低产因素分析[J].煤炭科学技术,2018,46(6):85-91. WANG Kaifeng,TANG Shuheng,ZHANG Songhang,et al. Analysis on low production factors of coalbed methane high production potential well in Southern Shizhuang block[J]. Coal Science and Technology,2018,46(6):85-91.
[15] 郗兆栋,唐书恒,杨国桥,等.湘中邵阳凹陷煤系气成藏基础及其共生组合特征[J].煤炭学报,2018,43(6):1589-1597. XI Zhaodong,TANG Shuheng,YANG Guoqiao,et al. Accumulation and combination characteristics of coal measure gas of Shaoyang depression in the central Hunan[J]. Journal of China Coal Society,2018,43(6):1589-1597.
[16] BUSTIN A M M,BUSTIN R M. Total gas-in-place,gas composition and reservoir properties of coal of the Mannville coal measures,central Alberta[J]. International Journal of Coal Geology,2016,153:127-143.
[17] 李勇,许卫凯,高计县,等."源-储-输导系统" 联控煤系气富集成藏机制:以鄂尔多斯盆地东缘为例[J].煤炭学报,2021,46(8):2440-2453. LI Yong,XU Weikai,GAO Jixian,et al. Mechanism of coal measure gas accumulation under integrated control of "source reservoir-transport system":A case study from east margin of Ordos Basin[J]. Journal of China Coal Society,2021,46(8):2440-2453.
[18] 秦勇.煤系气聚集系统与开发地质研究战略思考[J].煤炭学报,2021,46(8):2387-2399. QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387-2399.
[19] WANG Kaifeng,TANG Shuheng,ZHANG Songhang,et al. Numerical simulation of fracture propagation characteristics of hydraulic fracturing in multiple coal seams,Eastern Yunnan, China[J]. Frontiers in Earth Science,2022,10:854638.
[20] 李俊,张定宇,李大华,等.沁水盆地煤系非常规天然气共生聚集机制[J].煤炭学报,2018,43(6):1533-1546. LI Jun,ZHANG Dingyu,LI Dahua,et al. Co-accumulating mechanisms of unconventional gas in the coal measure of the Qinshui Basin[J]. Journal of China Coal Society,2018,43(6):1533-1546.
[21] 钟秋,傅雪海,张苗,等.沁水煤田石炭系-二叠系煤系地层页岩气开发潜力评价[J].天然气地球科学,2020,31(1):110-121. ZHONG Qiu,FU Xuehai,ZHANG Miao,et al. Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield[J]. Natural Gas Geoscience,2020,31(1):110-121.
[22] 郭少斌,王子龙,马啸.中国重点地区二叠系海陆过渡相页岩气勘探前景[J].石油实验地质,2021,43(3):377-385. GUO Shaobin,WANG Zilong,MA Xiao. Exploration prospect of shale gas with Permian transitional facies of some key areas in China[J]. Petroleum Geology&Experiment,2021,43(3):377-385.
[23] 屈晓荣,朱炎铭,张庆辉.海陆过渡相煤系非常规天然气储层特征及共探共采浅析:以榆社-武乡区块为例[J].西安石油大学学报(自然科学版),2017,32(3):1-8. QU Xiaorong,ZHU Yanming,ZHANG Qinghui. Reservoir characteristics and co-exploration and concurrent production analysis of unconventional natural gases in transitional facies coal measures:Taking Yushe-Wuxiang block as an example[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2017,32(3):1-8.
[24] 魏书宏,申有义,杨晓东.沁水盆地榆社-武乡区块煤系页岩气储层特征评价[J].中国煤炭地质,2017,29(8):25-31. WEI Shuhong,SHEN Youyi,YANG Xiaodong. Assessment of coal measures shale gas reservoir features in Yushe-Wuxiang block,Qinshui Basin[J]. Coal Geology of China,2017,29(8):25-31.
[25] 苏育飞,张庆辉,屈晓荣.沁水煤田中东部地区深部煤层气开发潜力评价[J].煤炭科学技术,2018,46(5):185-191. SU Yufei,ZHANG Qinghui,QU Xiaorong. Evaluation on development potential of deep coalbed methane in middle-east area of Qinshui Coalfield[J]. Coal Science and Technology,2018, 46(5):185-191.
[26] 赵楷棣,傅雪海,张苗,等.煤系泥页岩有机地球化学特征及生烃潜力评价[J].煤炭科学技术,2019,47(11):182-188. ZHAO Kaidi,FU Xuehai,ZHANG Miao,et al. Evaluation of organic geochemical characteristics and hydrocarbon generation potential of coal measure mud shale[J]. Coal Science and Technology,2019,47(11):182-188.
[27] XIE Weidong,GAN Huajun,CHEN Chongyu,et al. A model for superimposed coalbed methane,shale gas and tight sandstone reservoirs,Taiyuan Formation,Yushe-Wuxiang block, eastern Qinshui Basin[J]. Scientific Reports,2022,12:11455.
[28] 于兴河,陈建阳,张志杰,等.油气储层相控随机建模技术的约束方法[J].地学前缘,2005,12(3):237-244. YU Xinghe,CHEN Jianyang,ZHANG Zhijie,et al. Stochastic modeling for characteristics of petroleum reservoir constrained by facies[J]. Earth Science Frontiers,2005,12(3):237-244.
[29] LIU Longlong,ZHANG Jinliang,SUN Zhongqiang,et al. Constraints of three-dimensional geological modeling on reservoir connectivity:A case study of the Huizhou depression,Pearl River Mouth Basin,South China Sea[J]. Journal of Asian Earth Sciences,2019,171:144-161.
[30] 龙胜祥,张永庆,李菊红,等.页岩气藏综合地质建模技术[J].天然气工业,2019,39(3):47-55. LONG Shengxiang,ZHANG Yongqing,LI Juhong,et al. Comprehensive geological modeling technology for shale gas reservoirs[J]. Natural Gas Industry,2019,39(3):47-55.
[31] 商晓飞,龙胜祥,段太忠.页岩气藏裂缝表征与建模技术应用现状及发展趋势[J].天然气地球科学,2021,32(2):215-232. SHANG Xiaofei,LONG Shengxiang,DUAN Taizhong. Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs[J]. Natural Gas Geoscience,2021,32(2):215-232.
[32] ZHOU Fengde,ALLINSON G,WANG Jianzhong,et al. Stochastic modelling of coalbed methane resources:A case study in Southeast Qinshui Basin,China[J]. International Journal of Coal Geology,2012,99:16-26.
[33] 周优,张松航,唐书恒,等.柿庄南区块3号煤层含气量三维建模[J].煤田地质与勘探,2020,48(1):96-104. ZHOU You,ZHANG Songhang,TANG Shuheng,et al. Gas content modeling of No. 3 coal seam in district 3 of southern Shizhuang block[J]. Coal Geology&Exploration,2020,48(1):96-104.
[34] 索超,尹志军,朱睿哲,等.沉积微相耦合岩石相的复合相控建模:砾岩油藏储层建模新方法[J].石油天然气学报,2014, 36(2):34-39. SUO Chao,YIN Zhijun,ZHU Ruizhe,et al. Composite faciescontrolled modeling using coupling model of sedimentary microfacies:A new approach of conglomerate reservoir modeling[J]. Journal of Oil and Gas Technology,2014,36(2):34-39.
[35] 陈晶,黄文辉,陈燕萍,等.沁水盆地煤系地层页岩储层评价及其影响因素[J].煤炭学报,2017,42(增刊1):215-224. CHEN Jing,HUANG Wenhui,CHEN Yanping,et al. Evaluation of shale reservoir and its influencing factors in coal-bearing strata of Qinshui Basin[J]. Journal of China Coal Society,2017, 42(Suppl 1):215-224.
[36] 王凯峰,唐书恒,张松航,等.构造条件和水力压裂控制下的煤层气井异常高产水成因探讨[J].煤炭学报,2021,46(增刊2):849-861. WANG Kaifeng,TANG Shuheng,ZHANG Songhang,et al. Discussion on the causes of abnormally highwater production of coalbed methane wells under the control of structural conditions and hydraulic fracturing[J]. Journal of China Coal Society,2021,46(Suppl 2):849-861.
[37] JARVIE D M,HILL R J,RUBLE T E,et al. Unconventional shale-gas systems:The Mississippian Barnett shale of northcentral texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin,2007,91(4):475-499.
[38] 张磊夫,董大忠,孙莎莎,等.三维地质建模在页岩气甜点定量表征中的应用:以扬子地区昭通页岩气示范区为例[J].天然气地球科学,2019,30(9):1332-1340. ZHANG Leifu,DONG Dazhong,SUN Shasha,et al. Application of 3D geological modeling in quantitative characterization of shale gas sweet spots:Case study of Zhaotong national demonstration area of Yangtze region[J]. Natural Gas Geoscience, 2019,30(9):1332-1340.
[39] 段太忠,张文彪,何治亮,等.塔里木盆地顺北油田超深断溶体深度学习地质建模方法[J].石油与天然气地质,2023,44(1):203-212. DUAN Taizhong,ZHANG Wenbiao,HE Zhiliang,et al. Deep learning-based geological modeling of ultra-deep fault-karst reservoirs in Shunbei oilfield,Tarim Basin[J]. Oil&Gas Geology,2023,44(1):203-212.
[40] 张文彪,段太忠,刘彦锋,等.定量地质建模技术应用现状与发展趋势[J].地质科技情报,2019,38(3):264-275. ZHANG Wenbiao,DUAN Taizhong,LIU Yanfeng,et al. Application status and development trend of quantitative geological modeling[J]. Geological Science and Technology Information, 2019,38(3):264-275.
[41] 姜瑞忠,乔欣,何吉祥,等.页岩气地质储量计算新方法[J].天然气地球科学,2016,27(4):699-705. JIANG Ruizhong,QIAO Xin,HE Jixiang,et al. A new method to calculate shale gas geological reserves[J]. Natural Gas Geoscience,2016,27(4):699-705.
[42] 马成龙,张新新,李少龙.页岩气有效储层三维地质建模:以威远地区威202H2平台区为例[J].断块油气田,2017,24(4):495-499. MA Chenglong,ZHANG Xinxin,LI Shaolong. 3D geological modeling of effective shale-gas reservoirs:Taking Wei 202H2 platform of Weiyuan area as an example[J]. Fault-Block Oil&Gas Field,2017,24(4):495-499.
[1] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[2] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[3] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[4] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[5] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[6] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[7] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[8] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[9] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[10] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[11] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[12] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[13] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[14] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[15] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .