岩性油气藏 ›› 2024, Vol. 36 ›› Issue (2): 124–135.doi: 10.12108/yxyqc.20240212

• 地质勘探 • 上一篇    下一篇

塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模

陈叔阳1, 何云峰1, 王立鑫2, 尚浩杰2, 杨昕睿2, 尹艳树2   

  1. 1. 中国石油化工股份有限公司 西北油田分公司, 乌鲁木齐 830000;
    2. 长江大学 油气资源与勘探技术教育部重点实验室, 武汉 430100
  • 收稿日期:2023-01-12 修回日期:2023-09-28 出版日期:2024-03-01 发布日期:2024-03-06
  • 第一作者:陈叔阳(1976—),男,硕士,高级工程师,主要从事开发地质及储层表征方面的研究工作。地址:(830000)新疆维吾尔自治区乌鲁木齐市新市区长春南路466号。Email:chenshuyang.xbsj@sinopec.com。
  • 通信作者: 尹艳树(1978—),男,博士,教授,主要从事开发地质及储层表征建模方面的研究和教学工作。Email:yys@yangtzeu.edu.cn。
  • 基金资助:
    国家自然科学基金项目“多点地质统计学相控地震同时反演方法”(编号:41872138)资助。

Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No. 1 fault zone,Tarim Basin

CHEN Shuyang1, HE Yunfeng1, WANG Lixin2, SHANG Haojie2, YANG Xinrui2, YIN Yanshu2   

  1. 1. Sinopec Northwest Oilfield Company, Urumqi 830000, China;
    2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China
  • Received:2023-01-12 Revised:2023-09-28 Online:2024-03-01 Published:2024-03-06

摘要: 综合利用地震、测井、岩心以及动态生产资料,对塔里木盆地顺北1号断裂带断控型碳酸盐岩储集体的内部结构进行了层级划分;基于层级划分,通过地震资料属性提取与转换、深度学习、基于目标示性点过程模拟以及离散裂缝网络模拟(DFN)等方法建立了三维地质模型,并以模型进行油气储量和油藏数值模拟,将拟合结果与实际生产数据进行对比。研究结果表明:①顺北1号断裂带奥陶系断控型储层按层级由大到小分为走滑断裂影响带、断控体、类洞穴、类洞穴内簇充填和裂缝带共5个层级。②走滑断裂影响带受应力差异影响具有分段性,可细分为挤压段、拉分段和平移段;断控体在拉分段发育断裂交会型、单支走滑型,在平移段发育双断裂交错型和两断裂交会型,在挤压段发育双断裂扭曲型和双断裂交会型,共有6种平面组合样式;类洞穴在地震剖面上呈串珠状反射特征;类洞穴内部分为栅体与栅间(基岩),其中栅体又可进一步分为簇(角砾带)、簇间(裂缝带),整体表现为栅状结构,簇的物性更好;裂缝带为类洞穴的主要储集空间,在簇内部比簇间更发育,在一间房组比鹰山组更发育,一间房组和鹰山组均以发育高角度裂缝为主,在两者连接处则以发育水平缝为主。③地质模型预测的油气储量与地质分析储量误差为1.75%,模型模拟的生产井地层压力及累产液结果与生产动态吻合度较高,拟合误差小于10%。

关键词: 走滑断裂带, 断控体, 类洞穴, 碳酸盐岩储层, 三维地质建模, 深度学习, 奥陶系, 顺北1号断裂带, 塔里木盆地

Abstract: Based on the seismic,logging,core and dynamic data,the internal architecture of fault-controlled carbonate reservoirs in Shunbei No. 1 fault zone of Tarim Basin was divided. Based on the hierarchical division, a 3D geological model was established through seismic data attribute extraction and conversion,deep learning, target-based schematic point process simulation,and discrete fracture network simulation(DFN). Numerical simulation of oil and gas reserves and reservoirs was carried out with the model,and the fitting results were compared with the actual production data. The results show that:(1)The Ordovician fault-controlled reservoirs in the study area were categorized into five levels,from large to small,including strike-slip fault-influenced zones, fault-controlled bodies,cave-like,intra-cave-like cluster-filling and fracture zones.(2)The strike-slip faultinfluenced zones has segmentation due to stress differences,which can be subdivided into extrusion section, pullout section and translation section. The fault-control bodies develop six kinds of planar combination styles, including fault intersection type and single-branch slip type in the pullout section,double-fault staggered type and double-fault intersection type in the translation section,and double-fault twisted type and double-fault intersection type in the extrusion section. The cave-like is characterized by bead-like reflections on the seismic section. The intra-cave-like is divided into fenestration and inter-fenestration(bedrock),and the fenestration can be further divided into clusters(breccia zones)and inter-clusters(fracture zones),and the whole is characterized by fenestration structure,with better physical properties of the clusters. The fracture zones are the main reservoir space for cave-like structures,which are more developed within clusters than between clusters,and more developed in Yijianfang Formation than in Yingshan Formation. High-angle fractures are mainly developed in Yijianfang Formation and Yingshan Formation,while horizontal fractures are mainly developed at the joints between the two.(3)The error between the oil and gas reserves predicted by the geological model and the geological analysis reserves is 1.75%. The simulated production well formation pressure and cumulative liquid production results of the model are highly consistent with production performance,with a fitting error of less than 10%.

Key words: strike-slip fault zone, fault-controlled bodies, cave-like, carbonate reservoir, 3D geological modeling, Deep learning, Ordovician, Shunbei No. 1 fault zone, Tarim Basin

中图分类号: 

  • TE122.2
[1] 刘宝增,漆立新,李宗杰,等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报,2020,41(4):412-420. LIU Baozeng,QI Lixin,LI Zongjie,et al. Spatial characterization and quantitative description technology for ultra-deep faultkarst reservoirs in the Shunbei area[J]. Acta Petrolei Sinica, 2020,41(4):412-420.
[2] 刘军,李伟,龚伟,等. 顺北地区超深断控储集体地震识别与描述[J]. 新疆石油地质,2021,42(2):238-245. LIU Jun,LI Wei,GONG Wei,et al. Seismic identification and description of ultra-deep fault-controlled reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology,2021,42(2):238-245.
[3] 鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质,2015,36(3):347-355. LU Xinbian,HU Wenge,WANG Yan,et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area,Tarim Basin[J]. Oil & Gas Geology,2015,36(3):347-355.
[4] 彭军,夏梦,曹飞,等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏,2022,34(2):17-30. PENG Jun,XIA Meng,CAO Fei,et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area,Tarim Basin[J]. Lithologic Reservoirs,2022,34(2):17-30.
[5] 贾承造,马德波,袁敬一,等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业,2021,41(8):81-91. JIA Chengzao,MA Debo,YUAN Jingyi,et al. Structural characteristics,formation & evolution and genetic mechanisms of strike-slip faults in the Tarim Basin[J]. Natural Gas Industry, 2021,41(8):81-91.
[6] 邓尚,刘雨晴,刘军,等. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义:以塔里木盆地顺北地区为例[J]. 大地构造与成矿学,2021,45(6):1111-1126. DENG Shang,LIU Yuqing,LIU Jun,et al. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal:A case study of the Shunbei area,Tarim Basin[J]. Geotectonica et Metallogenia,2021,45(6):1111-1126.
[7] 马永生,何治亮,赵培荣,等. 深层-超深层碳酸盐岩储层形成机理新进展[J]. 石油学报,2019,40(12):1415-1425. MA Yongsheng,HE Zhiliang,ZHAO Peirong,et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica,2019,40(12):1415-1425.
[8] 云露,邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征:以顺北油气田为例[J]. 石油学报,2022,42(6):770-787. YUN Lu,DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characterisrics of their contral on reservoir formation and hydrocarbon accumulation:A case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica,2022,42(6):770-787.
[9] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022,49(1):1-17.MA Yongsheng,CAI Xunyu,YUN Lu,et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field,Tarim Basin, NW China[J]. Petroleum Exploration and Development,2022, 49(1):1-17.
[10] 商晓飞,段太忠,张文彪,等. 断控岩溶主控的缝洞型碳酸盐岩内部溶蚀相带表征:以塔河油田10区奥陶系油藏为例[J]. 石油学报,2020,41(3):329-341. SHANG Xiaofei,DUAN Taizhong,ZHANG Wenbiao,et al. Characterization of dissolution facies belt in fracture-cavity carbonate rocks mainly controlled by fault-controlling karst:A case study of Ordovician reservoirs in the block 10 of Tahe Oilfield[J]. Acta Petrologica Sinica,2020,41(3):329-341.
[11] 程洪,张杰,张文彪. 断溶体储层类型识别、预测及发育模式探讨:以塔里木盆地塔河十区TH10421单元为例[J]. 石油与天然气地质,2020,41(5):996-1003. CHENG Hong,ZHANG Jie,ZHANG Wenbiao. Discussion on identification,prediction and development pattern of faultedkarst carbonate reservoirs:A case study of TH10421 fracturecavity unit in block 10 of Tahe oilfield,Tarim Basin[J]. Oil & Gas Geology,2020,41(5):996-1003.
[12] 李阳,康志江,薛兆杰,等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发,2018,45(4):669-678. LI Yang,KANG Zhijiang,XUE Zhaojie,et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development,2018,45(4):669-678.
[13] 张雄,王晓之,郭天魁,等. 顺北油田缝内转向压裂暂堵剂评价实验[J]. 岩性油气藏,2020,32(5):170-176. ZHANG Xiong,WANG Xiaozhi,GUO Tiankui,et al. Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield[J]. Lithologic Reservoirs, 2020,32(5):170-176.
[14] 李冬梅,李会会,朱苏阳,等. 断溶体油气藏流动物质平衡方法[J]. 岩性油气藏,2022,34(1):154-162. LI Dongmei,LI Huihui,ZHU Suyang,et al. Modified flowing material balance method for fault-karst reservoirs[J]. Lithologic Reservoirs,2022,34(1):154-162.
[15] 鲁新便,荣元帅,李小波,等. 碳酸盐岩缝洞型油藏注采井网构建及开发意义:以塔河油田为例[J]. 石油与天然气地质, 2017,38(4):658-664. LU Xinbian,RONG Yuanshuai,LI Xiaobo,et al. Construction of injection-production well pattern in fractured-vuggy carbonate reservoir and its development significance:A case study from Tahe Oilfield in Tarim Basin[J]. Oil & Gas Geology,2017,38(4):658-664.
[16] 张文彪,段太忠,李蒙,等. 塔河油田托甫台区奥陶系断溶体构型类型及表征方法[J]. 石油勘探与开发,2020,47(6):1-12. ZHANG Wenbiao,DUAN Taizhong,LI Meng,et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai,Tahe oilfield,NW China[J]. Petroleum Exploration and Development,2020,47(6):1-12.
[17] 张文彪,张亚雄,段太忠,等. 塔里木盆地塔河油田托甫台区奥陶系碳酸盐岩断溶体系层次建模方法[J]. 石油与天然气地质,2022,43(1):207-218. ZHANG Wenbiao,ZHANG Yaxiong,DUAN Taizhong,et al. Hierarchy modeling of the Ordovician fault-karst carbonate reservoir in Tuoputai area,Tahe Oilfield,Tarim Basin,NW China[J]. Oil & Gas Geology,2022,43(1):207-218.
[18] 张文彪,段太忠,赵华伟,等. 断控岩溶体系空间结构差异性与三维建模:以顺北1 号断裂带为例[J]. 科学技术与工程, 2021,21(28):12094-12108. ZHANG Wenbiao,DUAN Taizhong,ZHAO Huawei,et al. Hierarchical characteristics and 3D modeling of fault-controlled paleokarst systems:A case study of shunbei1 strike-slip fault zone[J]. Science Technology and Engineering,2021,21(28):12094-12108.
[19] 张文彪,段太忠,何治亮,等. 碳酸盐岩古溶洞层级约束地质建模方法探讨:以塔河油田奥陶系某缝洞单元为例[J]. 地质科技通报,2022,41(3):273-281. ZHANG Wenbiao,DUAN Taizhong,HE Zhiliang,et al. Hierarchical constraint geological modelling method for carbonate paleokarst caves:A case study of Ordovician fracture-cavern unit in Tahe Oilfield[J]. Bulletin of Geological Science and Technology,2022,41(3):273-281.
[20] 何治亮,孙建芳,郭攀红,等. 碳酸盐岩储集层知识库构建方法及其在缝洞型油藏地质建模中的应用[J]. 石油勘探与开发,2021,48(4):710-718. HE Zhiliang,SUN Jianfang,GUO Panhong,et al. Construction method of carbonate reservoir knowledge base and its application in fracture-cavity reservoir geological modeling[J]. Petroleum Exploration and Development,2021,48(4):710-718.
[21] 刘阳平,吴博然,于忠良,等. 辫状河砂岩储层三维地质模型重构技术:以冀东油田高尚堡区块新近系馆陶组为例[J]. 岩性油气藏,2022,34(4):159-170. LIU Yangping,WU Boran,YU Zhongliang,et al. Reconstruction of 3D geological model of braided river sandstone reservoirs:A case study of Neogene Guantao Formation in Gaoshangpu block,Jidong Oilfield[J]. Lithologic Reservoirs,2022,34(4):159-170.
[22] 王晖,胡光义. 渤海C油田潜山裂缝型储集层随机离散裂缝网络模型的实现与优选方法[J]. 岩性油气藏,2012,24(1):74-79. WANG Hui,HU Guangyi. Realization and optimization of discrete fracture network model of buried hill fractured reservoir in C oilfield,Bohai Bay[J]. Lithologic Reservoirs,2012,24(1):74-79.
[1] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[2] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[3] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[4] 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56.
[5] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[6] 杨午阳, 魏新建, 李海山. 智能物探技术的过去、现在与未来[J]. 岩性油气藏, 2024, 36(2): 170-188.
[7] 杜江民, 崔子豪, 贾志伟, 张毅, 聂万才, 龙鹏宇, 刘泊远. 鄂尔多斯盆地苏里格地区奥陶系马家沟组马五5亚段沉积特征[J]. 岩性油气藏, 2023, 35(5): 37-48.
[8] 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[9] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[10] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[11] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[12] 陈中红, 柴智. 原油混合后成熟度参数的差异性及其地质意义——以塔北隆起托甫台地区奥陶系为例[J]. 岩性油气藏, 2022, 34(5): 38-49.
[13] 张凤奇, 李宜浓, 罗菊兰, 任小锋, 张兰馨, 张芥瑜. 鄂尔多斯盆地西部奥陶系乌拉力克组页岩微观孔隙结构特征[J]. 岩性油气藏, 2022, 34(5): 50-62.
[14] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[15] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .