岩性油气藏 ›› 2024, Vol. 36 ›› Issue (4): 44–56.doi: 10.12108/yxyqc.20240405

• 地质勘探 • 上一篇    下一篇

塔里木盆地现代分支河流体系形态、分布及其主控因素

孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波   

  1. 长江大学 地球科学学院, 武汉 430100
  • 收稿日期:2023-01-11 修回日期:2024-03-24 出版日期:2024-07-01 发布日期:2024-07-04
  • 第一作者:孟庆昊(1999—),男,长江大学在读硕士研究生,主要研究方向为沉积学。地址:(430100)湖北省武汉市蔡甸区大学路111号。Email:1494342435@qq.com。
  • 通信作者: 张昌民(1963—),男,博士,教授,主要从事沉积学与石油地质学方面的科研和教学工作。Email:zcm@yangtzeu.edu.cn。
  • 基金资助:
    国家自然科学基金重点项目“分支河流体系沉积模式与储层定量预测模型”(编号:42130813)资助。

Morphology,distribution and main controlling factors of modern distributive fluvial system in Tarim Basin

MENG Qinghao, ZHANG Changmin, ZHANG Xianghui, ZHU Rui, XIANG Jianbo   

  1. School of Geosciences, Yangtze University, Wuhan 430100, China
  • Received:2023-01-11 Revised:2024-03-24 Online:2024-07-01 Published:2024-07-04

摘要: 结合野外地质考察成果,运用地理信息软件测量了塔里木盆地及其周缘发育的分支河流体系(DFS),对比盆地不同区域 DFS 几何形态参数差异,以探究 DFS 发育规律及其主控因素。研究结果表明:①塔里木盆地沉积体系划分为 DFS、轴向沉积体系、沙漠沉积体系及其他沉积体系 4 种类型,DFS总面积占比最高,约为 36%,主要发育在南天山山前区、昆仑山山前区以及阿尔金山山前区 3 个区域。②盆地 DFS 可划分为小型、大型、巨型 3 种类型,昆仑山山前区 DFS 发育规模最大,阿尔金山山前区其次,南天山山前区最小。规模大的 DFS 控制着盆地 DFS 格局,在测量的 846 个 DFS 中,盆地小型 DFS数量占比高达 89.4%,总面积占比 5%;巨型 DFS 数量占比为 2.2%,总面积占比达 68%。③DFS 几何形态主要参数包括面积、半径、坡度。面积与半径拟合优度 R2为 0.966 4,具有较强的正相关性;坡度与半径拟合优度 R2为 0.463 0,具有一定程度的负相关性;坡度与面积拟合优度 R2为 0.498 8,具有一定程度的负相关性。④DFS 形态及分布的主控因素包括气候、水文、构造隆升程度。极端干旱的气候条件下,河流更易干涸,DFS 发育规模受到限制;DFS 半径与河流径流量相关性较强,河流径流量越大,DFS 发育规模越大;构造隆升程度起主导作用,山体隆升越大,越容易发育更大规模的 DFS。盆地内部负向构造单元促进 DFS 发育,正向构造单元阻碍 DFS 发育。

关键词: 分支河流体系, 河流扇, 巨型扇, 几何形态, 构造隆升程度, 负向构造单元, 正向构造单元, 第四纪, 塔里木盆地, 陆相盆地

Abstract: Combined with the results of field geological investigation,the geographic information software was used to measure the distributive fluvial system(DFS)developed in and around Tarim Basin,and the differences in geometric parameters of DFS in different regions of the basin were compared to study the development rules and main controlling factors of DFS. The results show that:(1)The sedimentary system of Tarim Basin can be divided into four types:DFS,axial sedimentary system,desert sedimentary system and other sedimentary systems. The DFS has the highest proportion,accounting for about 36%,and mainly developed in south Tianshan Mountain piedmont area,the Kunlun Mountain piedmont area and the Altun piedmont area.(2)The DFS in Tarim Basin can be divided into three types:small,large and mega DFS,with the largest scale of DFS deve-loped in the Kunlun Mountain piedmont area,followed by Altun Mountain piedmont area,and the smallest scale in the south Tianshan Mountain piedmont area. Large-scale DFS controls the pattern of DFS. Among the 846 measured DFS, the proportion of small-scale DFS in the basin is 89.4%,and the total area accounts for 5%. The proportion of mega DFS is 2.2%,and the total area accounts for 68%.(3)The main geometric parameters of DFS include area,radius,and slope. The goodness of fit R2 between area and radius is 0.966 4,indicating a strong positive correlation. The goodness of fit R2 between slope and radius is 0.463 0,indicating a certain degree of negative correlation. The goodness of fit R2 between slope and area is 0.498 8,indicating a certain degree of negative correlation.(4)The main controlling factors for the morphology and distribution of DFS include climate,hydrology and tectonic uplift degree. Under extreme arid climate,rivers are more likely to dry up,and the development scale of DFS is limited. The river runoff of DFS has a strong correlation with radius,and the larger the river runoff,the larger the scale of DFS development. The degree of tectonic uplift plays a dominant role,and the higher the mountain uplift,the easier it is to develop larger scale DFS. Negative structural units within the basin promote the development of DFS,while the positive structural units hinder the development of DFS.

Key words: distributive fluvial system, fluvial fan, megafan, geometry, structural uplift degree, negative structural unit, positive structural unit, Quaternary, Tarim Basin, nonmarine basin

中图分类号: 

  • TE121.3
[1] WEISSMANN G S,HARTLEY A J,NICHOLS G J,et al. Fluvial form in modern continental sedimentary basins:Distributive fluvial systems[J]. Geology,2010,38(1):39-42.
[2] HARTLEY A J,WEISSMANN G S,NICHOLS G J,et al. Large distributive fluvial systems:Characteristics,distribution, and controls on development[J]. Journal of Sedimentary Research,2010,80(2):167-183.
[3] HANSFORD M R,PLINK-BJRKLUND P. River discharge variability as the link between climate and fluvial fan formation[J]. Geology,2020,48(10):952-956.
[4] 张祥辉,张昌民,冯文杰,等.苏干湖盆地周缘分支河流体系的几何形态及影响因素分析[J].地质学报,2019,93(11):2947-2959. ZHANG Xianghui,ZHANG Changmin,FENG Wenjie,et al. Geometry and control factors of distributive fluvial system around the Sugan Lake Basin[J]. Journal of Geology,2019,93(11):2947-2959.
[5] 黄若鑫,张昌民,冯文杰.冲断带构造作用控制下的分支河流体系特征及其成因分析:以塔里木盆地西北缘柯坪地区为例[J].沉积学报,2022,40(1):166-181. HUANG Ruoxin,ZHANG Changmin,FENG Wenjie. Characteristics and factor analysis of distributive fluvial systems due to tectonic thrust belt activity:Example of Keping area,northwest Tarim Basin[J]. Acta Sedimentologica Sinica,2022,40(1):166-181.
[6] REIS A D,SCHERER C M D S,OWEN A,et al. A quantitative depositional model of a lager distributive fluvial system (megafan) with terminal aeolian interaction:The Upper Jurassic Guara DFS in southwestern Gondwana[J]. Journal of Sedimentary Research,2022,92(5):460-485.
[7] ZHANG Xianghui,ZHANG Changmin,HARTLEY A J,et al. Analysis of the sedimentary characteristics of a modern distributive fluvial system:A case study of the Great Halten River in the Sugan Lake Basin,Qinghai,China[J]. Journal of Earth Science,2023,34(4):1249-1262.
[8] 张祥辉,张昌民,冯文杰,等.干旱地区分支河流体系沉积特征:以疏勒河分支河流体系为例[J].石油勘探与开发,2021, 48(4):756-767. ZHANG Xianghui,ZHANG Changmin,FENG Wenjie,et al. Sedimentary characteristics of distributive fluvial system in arid area:A case study of the Shule River distributive fluvial system[J]. Petroleum Exploration and Development,2021,48(4):756-767.
[9] 张元福,王敏,张森,等.现代河流扇的全球分布、类型及控制因素[J].地学前缘,2023,30(4):389-404. ZHANG Yuanfu,WANG Min,ZHANG Sen,et al. Modern fluvial fans:Global distribution,fan types and controlling factors[J]. Earth Science Frontiers,2023,30(4):389-404.
[10] 张昌民,张祥辉,Adrian J. Hartley,等.分支河流体系分类初探[J].岩性油气藏,2023,35(4):1-15. ZHANG Changmin,ZHANG Xianghui,HARTLEY A J,et al. On classification of distributive fluvial systems[J]. Lithologic Reservoirs,2023,35(4):1-15.
[11] 张昌民,张祥辉,朱锐,等.分支河流体系研究进展及应用前景展望[J].岩性油气藏,2023,35(5):11-25. ZHANG Changmin,ZHANG Xianghui,ZHU Rui,et al. Research progress and application prospect of distributive fluvial system[J]. Lithologic Reservoirs,2023,35(5):11-25.
[12] 张昌民,张祥辉,王庆,等.分支河流体系沉积学工作框架与流程[J].岩性油气藏,2024,36(1):1-13. ZHANG Changmin,ZHANG Xianghui,WANG Qing,et al. Research framework for distributive fluvial system[J]. Lithologic Reservoirs,2024,36(1):1-13.
[13] 许志琴,李思田,张建新,等.塔里木地块与古亚洲/特提斯构造体系的对接[J].岩石学报,2011,27(1):1-22. XU Zhiqin,LI Sitian,ZHANG Jianxin,et al. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block[J]. Acta Petrologica Sinica,2011,27(1):1-22.
[14] 张昌民,胡威,朱锐,等.分支河流体系的概念及其对油气勘探开发的意义[J].岩性油气藏,2017,29(3):1-9. ZHANG Changmin,HU Wei,ZHU Rui,et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs,2017,29(3):1-9.
[15] 刘嘉麒,秦小光.塔里木盆地的环境格局与绿洲演化[J].第四纪研究,2005,25(5):533-539. LIU Jiaqi,QIN Xiaoguang. Evolution of the environmental framework and oasis in the Tarin Basin[J]. Quaternary Sciences,2005,25(5):533-539.
[16] 孙爱军,赵晖,刘冰,等.末次冰盛期以来塔里木盆地绿洲演化研究进展与问题[J].干旱区地理,2022,45(6):1761-1772. SUN Aijun,ZHAO Hui,LIU Bing,et al. Oases evolution in Tarim Basin since the Last Glacial Maximum:Progress and issues[J]. Arid Land Geography,2022,45(6):1761-1772.
[17] 宋兴国,陈石,杨明慧,等.塔里木盆地富满油田FⅠ16断裂发育特征及其对油气分布的影响[J].岩性油气藏,2023,35(3):99-109. SONG Xingguo,CHEN Shi,YANG Minghui,et al. Development characteristics of F Ⅰ16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution[J]. Lithologic Reservoirs,2023,35(3):99-109.
[18] 金炯,董光荣,申建友.新疆塔里木盆地的现代气候状况[J].干旱区资源与环境,1994,8(3):12-21. JIN Jiong,DONG Guangrong,SHEN Jianyou. The contemporary climate of Tarim Basin,Xinjiang[J]. Journal of Arid Land Resources and Environment,1994,8(3):12-21.
[19] 张青松,李炳元,朱立平.青藏高原西北部第四纪环境的新认识[J].地理学报,1994,49(4):289-297. ZHANG Qingsong,LI Bingyuan,ZHU Liping. New recognitions of Quaternary environment in the northwest Tibetan Plateau[J]. Acta Geographica Sinica,1994,49(4):289-297.
[20] 郑洪波,贾军涛,王可.塔里木盆地南缘新生代沉积:对青藏高原北缘隆升和塔克拉玛干沙漠演化的指示[J].地学前缘, 2009,16(6):154-161. ZHENG Hongbo,JIA Juntao,WANG Ke. Cenozoic sedimentation in the southern Tarim Basin:Implications for the uplift of northern Tibet and evolution of the Taklamakan Desert[J]. Earth Science Frontiers,2009,16(6):154-161.
[21] 邓铭江.中国塔里木河治水理论与实践[M].北京:科学出版社,2009. DENG Mingjiang. Theory and practice of water management in the Tarim River,China[M]. Beijing:Science Press,2009.
[22] 余国安,李志威,黄河清,等.人类活动影响下的干旱区河流地貌演变:以塔里木河为例[J].水科学进展,2017,28(2):183-192. YU Guoan,LI Zhiwei,HUANG Heqing,et al. Human impacts on fluvial processes in a very arid environment:Case of Tarim River in China[J]. Advances in Water Science,2017,28(2):183-192.
[23] 张昌民,宋新民,支东明,等.陆相含油气盆地沉积体系再思考:来自分支河流体系的启示[J].石油学报,2020,41(2):127-153. ZHANG Changmin,SONG Xinmin,ZHI Dongming,et al. Rethinking on the sedimentary system of terrestrial petroliferous basins:Insights from distributive fluvial system[J]. Acta Petrolei Sinica,2020,41(2):127-153.
[24] 赵芸,张昌民,朱锐,等.分支河流体系(DFS)研究进展[J].大庆石油地质与开发,2021,40(6):1-11. ZHAO Yun,ZHANG Changmin,ZHU Rui,et al. Research progress of the distributive fluvial system (DFS)[J]. Petroleum Geology&Oilfield Development in Daqing,2021,40(6):1-11.
[25] 李国玉,陈启林,白云来,等.再论海相沉积是中国石油工业未来的希望[J].岩性油气藏,2014,26(6):1-7. LI Guoyu,CHEN Qilin,BAI Yunlai,et al. Marine sediment:The future expectation of China's petroleum industry[J]. Lithologic Reservoirs,2014,26(6):1-7.
[26] 贾承造.塔里木盆地构造特征与油气聚集规律[J].新疆石油地质,1999,20(3):177-183. JIA Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999,20(3):177-183.
[27] 刘雁婷,傅恒,陈骥,等.塔里木盆地巴楚-塔中地区寒武系层序地层特征[J].岩性油气藏,2010,22(2):48-53. LIU Yanting,FU Heng,CHEN Ji,et al. Sequence stratigraphy of Cambrian in Bachu-Tazhong area,Tarim Basin[J]. Lithologic Reservoirs,2010,22(2):48-53.
[28] 何登发,贾承造,李德生,等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质,2005,25(1):64-77. HE Dengfa,JIA Chengzao,LI Desheng,et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil&Gas Geology,2005,25(1):64-77.
[29] 仲米虹,唐武.前陆盆地隆后坳陷区湖底扇沉积特征及主控因素:以塔北轮南地区三叠系为例[J].岩性油气藏,2018,30(5):18-28. ZHONG Mihong,TANG Wu. Sedimentary characteristics and controlling factors of sublacustrine fans in backbulge zone of foreland basin:Triassic in Lunnan area,Tarim Basin[J]. Lithologic Reservoirs,2018,30(5):18-28.
[30] 汤良杰,李萌,杨勇,等.塔里木盆地主要前陆冲断带差异构造变形[J].地球科学与环境学报,2015,37(1):46-56. TANG Liangjie,LI Meng,YANG Yong,et al. Differential structural deformation of main foreland thrust belts in Tarim Basin[J]. Journal of Earth Science and Environment,2015,37(1):46-56.
[31] 贾承造,魏国齐,姚慧君,等.盆地构造演化与区域构造地质[M].北京:石油工业出版社,1995. JIA Chengzao,WEI Guoqi,YAO Huijun,et al. Tectonic evolution of basins and regional tectonic geology[M]. Beijing:Petroleum Industry Press,1995.
[32] 张昌民,朱锐,HARTLEY A J,等.分支河流体系基本特征与研究进展[M].武汉:中国地质大学出版社,2020. ZHANG Changmin,ZHU Rui,HARTLEY A J,et al. Distributive fluvial system:Their characteristics and research development[M]. Wuhan:China University of Geosciences Press, 2020.
[33] 张瑜,马黎春,王凯.罗布泊干盐湖第四纪环境演变研究进展[J].地球科学进展,2022,37(2):149-164. ZHANG Yu,MA Lichun,WANG Kai. Research progress of Quaternary environmental evolution in Lop Nor Playa[J]. Advances in Earth Science,2022,37(2):149-164.
[34] 张昌民,朱锐,赵康,等.从端点走向连续:河流沉积模式研究进展述评[J].沉积学报,2017,35(5):926-944. ZHANG Changmin,ZHU Rui,ZHAO Kang,et al. From end member to continuum:Review of fluvial facies model research[J]. Acta Sedimentologica Sinica,2017,35(5):926-944.
[35] ZHANG Xianghui,ZHANG Changmin,FENG Wenjie,et al. Application of remote sensing in the description of fluvial system in dryland:A case study of Golmud distributive fluvial system,Qaidam Basin,NW China[J]. Journal of Palaeogeography,2022,11(4):601-617.
[36] LAWTON T F,SCHELLENBACH W L,NUGENT A E. Late Cretaceous fluvial-megafan and axial-river systems in the Southern Cordilleran Foreland Basin:Drip tank member of straight cliffs formation and adjacent strata,southern Utah,U.S. A[J]. Journal of Sedimentary Research,2014,84(5):407-434.
[37] 李晋昌,董治宝,王训明,等.塔里木盆地沙尘天气的季节变化及成因分析[J].中国沙漠,2008,28(1):142-148. LI Jinchang,DONG Zhibao,WANG Xunming,et al. Seasonal distribution and causes of dust events in Tarim Basin,China[J]. Journal of Desert Research,2008,28(1):142-148.
[38] 郭泽呈,魏伟,石培基,等.中国西北干旱区土地沙漠化敏感性时空格局[J].地理学报,2020,75(9):1948-1965. GUO Zecheng,WEI Wei,SHI Peiji,et al. Spatiotemporal changes of land desertification sensitivity in the arid region of northwest China[J]. Acta Geographica Sinica,2020,75(9):1948-1965.
[39] 朱秉启,于静洁,秦晓光,等.新疆地区沙漠形成与演化的古环境证据[J].地理学报,2013,68(5):661-679. ZHU Bingqi,YU Jingjie,QIN Xiaoguang,et al. Formation and evolution of sandy deserts in Xinjiang:The palaeo-environmental evidences[J]. Acta Geographica Sinica,2013,68(5):661-679.
[40] 韩永翔,杨胜利,方小敏,等.塔里木盆地中的大气环流及昆仑山北坡的黄土堆积[J].中国沙漠,2006,26(3):351-355. HAN Yongxiang,YANG Shengli,FANG Xiaomin,et al. Atmospheric circulation in the Tarim Basin and loess accumulation in northern slope of the Kunlun Mountains[J]. Journal of Desert Research,2006,26(3):351-355.
[41] 史娜娜,韩煜,王琦,等.新疆南部地区风沙扩散风险评价及景观格局优化[J].地理学报,2021,76(1):73-86. SHI Nana,HAN Yu,WANG Qi,et al. Risk assessment of sandstorm diffusion and landscape pattern optimization in southern Xinjiang[J]. Acta Geographica Sinica,2021,76(1):73-86.
[42] 李琼,王姣姣,潘保田.构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J].地球科学进展,2020,35(6):607-617. LI Qiong,WANG Jiaojiao,PAN Baotian. Numerical simulation of the influence of tectonics and precipitation on the evolution of alluvial fans at the northern foot of Qilian Mountains[J]. Advances in Earth Science,2020,35(6):607-617.
[43] 聂礼尚,马静辉,唐小飞,等.准噶尔盆地东部帐篷沟地区中新生代构造事件及其油气地质意义[J].岩性油气藏,2023, 35(5):81-91. NIE Lishang,MA Jinghui,TANG Xiaofei,et al. Meso-Cenozoic tectonic events and their petroleum geological significance in Zhangpenggou area,eastern Junggar Basin[J]. Lithologic Reservoirs,2023,35(5):81-91.
[1] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[2] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[3] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[4] 张昌民, 张祥辉, 王庆, 冯文杰, 李少华, 易雪斐, Adrian J. HARTLEY. 分支河流体系沉积学工作框架与流程[J]. 岩性油气藏, 2024, 36(1): 1-13.
[5] 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[6] 张昌民, 张祥辉, 朱锐, 冯文杰, 尹太举, 尹艳树, Adrian J. HARTLEY. 分支河流体系研究进展及应用前景展望[J]. 岩性油气藏, 2023, 35(5): 11-25.
[7] 张昌民, 张祥辉, ADRIAN J. Hartley, 冯文杰, 尹太举, 尹艳树, 朱锐. 分支河流体系分类初探[J]. 岩性油气藏, 2023, 35(4): 1-15.
[8] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[9] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[10] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[11] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
[12] 彭军, 夏梦, 曹飞, 夏金刚, 李峰. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30.
[13] 王素英, 张翔, 田景春, 彭明鸿, 郑潇宇, 夏永涛. 塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J]. 岩性油气藏, 2021, 33(5): 81-94.
[14] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[15] 任大忠, 张晖, 周然, 王茜, 黄海, 唐胜蓝, 金娜. 塔里木盆地克深地区巴什基奇克组致密砂岩储层敏感性研究[J]. 岩性油气藏, 2018, 30(6): 27-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .