岩性油气藏 ›› 2023, Vol. 35 ›› Issue (5): 11–25.doi: 10.12108/yxyqc.20230502

• 地质勘探 • 上一篇    下一篇

分支河流体系研究进展及应用前景展望

张昌民1, 张祥辉1, 朱锐1, 冯文杰1, 尹太举1, 尹艳树1, Adrian J. HARTLEY2   

  1. 1. 长江大学 地球科学学院, 武汉 430100;
    2. 阿伯丁大学 地球科学学院, 英国 苏格兰 阿伯丁 AB24 3UE
  • 收稿日期:2022-11-15 修回日期:2022-12-28 出版日期:2023-09-01 发布日期:2023-09-28
  • 第一作者:张昌民(1963—),男,博士,教授,主要从事沉积学与石油地质学方面的教学和科研工作。地址:(430100)湖北省武汉市蔡甸区大学路111号长江大学地球科学学院。Email:zcm@yangtzeu.edu.cn。
  • 通信作者: 张祥辉(1993—),男,长江大学在读博士研究生,研究方向为河流沉积学。Email:zxhedu@126.com。
  • 基金资助:
    国家自然科学基金重点项目 “分支河流体系沉积模式与储层定量预测模型”(编号: 42130813) 资助。

Research progress and application prospect of distributive fluvial system

ZHANG Changmin1, ZHANG Xianghui1, ZHU Rui1, FENG Wenjie1, YIN Taiju1, YIN Yanshu1, Adrian J. HARTLEY2   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK
  • Received:2022-11-15 Revised:2022-12-28 Online:2023-09-01 Published:2023-09-28

摘要: 通过文献调研和地质分析,系统总结了分支河流体系(DFS)理论的研究进展、应用前景和发展趋势。研究结果表明: ①当前DFS理论研究的五大重点分别是通过实例分析挖掘其科学内涵,探讨应用价值,解决概念争论;明确DFS是一个多种河道共生的沉积体系,不能理解为一种新的河道类型;河道网络和河型转换是DFS研究中的重要问题;建立和完善DFS的沉积模式;建立DFS储层预测模型。②开展DFS研究对促进陆相盆地沉积储层学科的理论创新和挖掘陆相盆地油气资源潜力具有重要理论意义和广阔的应用前景。③当前DFS研究主攻方向是建立沉积储层数据库,构建沉积模式和识别标志,形成河网体系和河型演变定量预测模型,实现不同建模方法的融合归一;未来DFS研究应当将沉积学与地貌学、地理学、现代地球信息科学技术相结合,应用大数据和智能化技术,实现对沉积体系的定量表征和储层定量预测。

关键词: 分支河流体系, 研究进展, 沉积模式, 储层预测模型, 储层沉积学, 油气勘探与开发, 陆相盆地

Abstract: Based on literature research and geological analysis,the research progress,application prospect and development trend of distributive fluvial system(DFS)theory were reviewed. The results show that:(1)There are five important problems should be claimed in current DFS research,including to excavate the scientific connotation of DFS through case analysis and explore its application value;DFS is a multi-channel coexisting depositional system which cannot be thought as a new pattern of channel;channels network and channels transition,as well as their evolution,are important issues in DFS study;it is urgent to build and to perfect the depositional model; predictable reservoir modelling is the way to realize the basin-scale reservoir prediction.(2)DFS are prospected to be widely developed in petroliferous basins and the researches are of great theoretical significance and application value for promoting the theoretical sedimentary innovation and oil and gas resources exploration.(3)The current study should be focused on DFS sedimentary database construction,DFS facies identification model construction,the research of quantitative DFS channel network prediction and their evolution and hierarchical DFS reservoir geological model integration. Future trend in DFS research should combine sedimentology with geomorphology,geography and Earth Information Science and technology,with the help of big data and intelligent technology, to realize quantitative depositional system prediction and reservoir characterization.

Key words: distributive fluvial system, research progress, sedimentary model, reservoir prediction model, reservoir sedimentology, oil and gas exploration and development, nonmarine basin

中图分类号: 

  • TE122
[1] 贾承造,邹才能,杨智,等.陆相油气地质理论在中国中西部盆地的重大进展[J].石油勘探与开发, 2018, 45(4):546-560. JIA Chengzao, ZOU Caineng, YANG Zhi, et al. Significant progress of continental petroleum geology theory in basins of central and western China[J]. Petroleum Exploration and Development, 2018, 45(4):546-560.
[2] 胡素云,李建忠,王铜山,等.中国石油油气资源潜力分析与勘探选区思考[J].石油实验地质, 2020, 42(5):813-823. HU Suyun, LI Jianzhong, WANG Tongshan, et al. CNPC oil and gas resource potential and exploration target selection[J]. Petroleum Geology & Experiment, 2020, 42(5):813-823.
[3] WEISSMANN G S, HARTLEY A J, NICHOLS G J, et al. Fluvial form in modern continental sedimentary basins:Distributive fluvial systems[J]. Geology, 2010, 38(1):39-42.
[4] HARTLEY A J,WEISSMANN G S,NICHOLS G J,et al. Large distributive fluvial systems:Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2):167-183.
[5] 贾承造.中国石油工业上游发展面临的挑战与未来科技攻关方向[J].石油学报, 2020, 41(12):1445-1464. JIA Chengzao. Development challenges and future scientific and technological researches in China's petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12):1445-1464.
[6] 匡立春,刘合,任义丽,等.人工智能在石油勘探开发领域的应用现状与发展趋势[J].石油勘探与开发, 2021, 48(1):1-11. KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1):1-11.
[7] ADRIANO D, CLAITON M, OWEN A, et al. A quantitative depositional model of a large distributive fluvial system (Megafan) with terminal aeolian interaction:The Upper Jurassic Guará DFS in southwestern Gondwana[J]. Journal of Sedimentary Research, 2022, 92(5):460-485.
[8] 张昌民,朱锐, HARTLEY A J,等.分支河流体系基本特征与研究进展[M].武汉:中国地质大学出版社, 2020. ZHANG Changmin, ZHU Rui, HARTLEY A J, et al. Distributive fluvial system:Their characteristics and research development[M]. Wuhan:Press of Chinese University of Geosciences, 2020.
[9] 张昌民,胡威,朱锐,等.分支河流体系的概念及其对油气勘探开发的意义[J].岩性油气藏, 2017, 29(3):1-9. ZHANG Changmin, HU Wei, ZHU Rui, et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 2017, 29(3):1-9.
[10] 张昌民,宋新民,支东明,等.陆相含油气盆地沉积体系再思考:来自分支河流体系的启示[J].石油学报, 2020, 41(2):127-153. ZHANG Changmin, SONG Xinmin, ZHI Dongming, et al. Rethinking on the sedimentary system of terrestrial petroliferous basins:Insights from distributive fluvial system[J]. Acta Petrolei Sinica, 2020, 41(2):127-153.
[11] 张元福,戴鑫,王敏,等.河流扇的概念、特征及意义[J].石油勘探与开发, 2020, 47(5):947-957. ZHANG Yuanfu, DAI Xin, WANG Min, et al. The concept, characteristics and significance of fluvial fans[J]. Petroleum Exploration and Development, 2020, 47(5):947-957.
[12] 石雨昕,高志勇,周川闽,等.新疆博斯腾湖北缘现代冲积扇与扇三角洲平原分支河流体系的沉积特征与意义[J].石油学报, 2019, 40(5):542-556. SHI Yuxin, GAO Zhiyong, ZHOU Chuanmin, et al. Sedimentary characteristics and significance of distributive fluvial system of modernalluvial fan and fan delta plain in the northern margin of Bosten lake, Xinjiang[J]. Acta Petrolei Sinica, 2019, 40(5):542-556.
[13] 张祥辉,张昌民,冯文杰,等.苏干湖盆地周缘分支河流体系的几何形态及影响因素分析[J].地质学报, 2019, 93(11):2947-2959. ZHANG Xianghui, ZHANG Changmin, FENG Wenjie, et al. Geometry and control factors of distributive fluvial system around the Sugan Lake basin[J]. Acta Geologica Sinica, 2019, 93(11):2947-2959.
[14] 张祥辉,张昌民,冯文杰,等.干旱地区分支河流体系沉积特征:以疏勒河分支河流体系为例[J].石油勘探与开发, 2021, 48(4):756-767. ZHANG Xianghui, ZHANG Changmin, FENG Wenjie, et al. Sedimentary characteristics of distributive fluvial system in arid area:A case study of the Shule River distributive fluvial system[J]. Petroleum Exploration and Development, 2021, 48(4):756-767.
[15] 黄若鑫,张昌民,冯文杰.冲断带构造作用控制下的分支河流体系特征及其成因分析:以塔里木盆地西北缘柯坪地区为例[J].沉积学报, 2022, 40(1):166-181. HUANG Ruoxin, ZHANG Changmin, FENG Wenjie. Characteristics and factor analysis of distributive fluvial systems due to tectonic thrust belt activity:Example of Keping area, northwestern Tarim Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1):166-181.
[16] 何苗,秦兰芝,尹太举,等.分支河流体系在东海西湖凹陷南部的运用及其对油气潜力的指示[J].中国地质, 2021, 48(3):1-16. HE Miao, QIN Lanzhi, YIN Taiju, et al. The application of the distributive fluvial system in the south Xihu depression, East China Sea and its indication of oil and gas potential[J]. Geology in China, 2021, 48(3):1-16.
[17] 李相博,刘化清,邓秀芹,等.干旱环境河流扇概念与鄂尔多斯盆地延长组"满盆砂"成因新解[J].沉积学报, 2021, 39(5):1208-1221. LI Xiangbo, LIU Huaqing, DENG Xiuqin, et al. The concept of fluvial fans in an arid environment:A new explanation of the origin of "sand-filled basins" in the Yanchang Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5):1208-1221.
[18] 张金亮.曲流河扇相模式及应用[J].地质论评, 2022, 68(2):408-430. ZHANG Jinliang. The facies model of a meandering fluvial fan and its application[J]. Geological Review, 2022, 68(2):408-430.
[19] WEISSMANN G S, HARTLEY A J, SCUDERI L A, et al. Prograding distributive fluvial systems geomorphic models and ancient examples[C]//DRIESE S G, NORDT L C. New frontiers in paleopedology and terrestrial paleoclimatology:Palcools and soil surface analog systems. Tulsa:Society for Sedimentary Geology, 2013:131-147.
[20] SMITH G H S, BEST J L, ASHWORTH P J, et al. Fluvial form in modern continental sedimentary basins:Distributive fluvial systems:Comment[J]. Geology, 2010, 38(12):230.
[21] FIELDING C R, ASHWORTH P J, BEST J L, et al. Tributary, distributary and other fluvial patterns:What really represents the norm in the continental rock record?[J]. Sedimentary Geology, 2012, 261(15):15-32.
[22] HARTLEY A J, WEISSMANN G S, NICHOLS G J, et al. Fluvial form in modern continental sedimentary basins:Distributive fluvial systems:Reply[J]. Geology, 2010, 38(12):231.
[23] WEISSMANN G S, HARTLEY A J, SCUDERI L A, et al. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record:A review[J]. Geomorphology, 2015, 250:187-219.
[24] HARTLEY A J, WEISSMANN G S, SCUDERI L A. Controls on the apex location of large deltas[J]. Journal of the Geological Society, 2016, 174(1):10-13.
[25] HARTLEY A J, WEISSMANN G S, BHATTACHARAYA P, et al. Soil development on modern distributive fluvial systems:Preliminary observations with implications for interpretation of paleosols in the rock record[C]//DRIESE S G, NORDT L C. New frontiers in paleopedology and terrestrial paleoclimatology:Paleosols and soil surface analog systems. Tulsa:Society for Sedimentary Geology, 2013:149-158.
[26] PRIMM J W, JOHNSON C L, STEARNS M. Basin-axial progradation of a sediment supply driven distributive fluvial system in the Late Cretaceous southern Utah foreland[J]. Basin Research, 2018, 30(2):249-278.
[27] OWEN A, HARTLEY A J, EBINGHAUS A, et al. Basin-scale predictive models of alluvial architecture:Constraints from the Palaeocene-Eocene, Bighorn Basin, Wyoming, U.S.A.[J]. Sedimentology, 2019, 66(2):736-763.
[28] CARTWRIGHT R J, BURR D M. Using synthetic aperture radar data of terrestrial analogs to test alluvial fan formation mechanisms on Titan[J]. Icarus, 2017, 284:183-205.
[29] JACOBSEN R E, BURR D M. Dichotomies in the fluvial and alluvial fan deposits of the Aeolis Dorsa, Mars:Implications for weathered sediment and paleoclimate[J]. Geosphere, 2017, 13(6):2154-2168.
[30] QUARTERO E M, LEIER A L, BENTLEY L R, et al. Basinscale stratigraphic architecture and potential Paleocene distributive fluvial systems of the Cordilleran Foreland Basin, Alberta Canada[J]. Sedimentary Geology, 2015, 316:26-31.
[31] DREW F. Alluvial and lacustrine deposits and glacial records ofthe upper-indus basin[J]. Quarterly Journal of The Geological Society, 1873, 29(1/2):441-471.
[32] 张纪易.粗碎屑洪积扇的某些沉积特征和微相划分[J].沉积学报, 1985, 3(3):75-85. ZHANG Jiyi. Some depositional characteristics and microfacies[J]. Acta Sedimentologica Sinica, 1985, 3(3):75-85.
[33] BLAIR T C, MCPHERSON J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages[J]. Journal of Sedimentary Research, 1994, 64(3):450-489.
[34] GALLOWAY W E, HOBDAY D K. Terrigenous clastic depositional systems:Applications to petroleum, coal, and uranium exploration[M]. Berlin:Springer-Verlag, 1983.
[35] GALLOWAY W E, HOBDAY D K. Terrigenous clastic depositional systems:Applications to fossil fuel and groundwater resources. 2nd ed[M]. New York:Springer-Verlag, 1996.
[36] STANISTREET I G, MCCARTHY T S. The Okavango fan and the classification of subaerial fan systems[J]. Sedimentary Geology, 1993, 85(1):115-133.
[37] DECELLES P G, CAVAZZA W. A comparison of fluvial megafans in the Cordilleran (Upper Cretaceous) and modern Himalayan foreland basin systems[J]. Geological Society of America Bulletin, 1999, 111(9):1315-1334.
[38] LEIER A L, DECELLES P G, PELLETIER J D. Mountains, monsoons and megafans[J]. Geology, 2005, 33(4):289-292.
[39] FONTANA A, MOZZT P, MARCHETTI M. Alluvial fans and megafans along the southern side of the Alps[J]. Sedimentary Geology, 2014, 301:150-171.
[40] TRENDELLA M, ATCHLEY S C, NORDT L C. Facies analysis of aprobable large-fluvial-fan depositional:The Upper Triassic Chinle Formation at Petrified Forest National Park, Arizona, U. S.A.[J]. Journal of Sedimentary Research, 2013, 83(10):873-895.
[41] SHUKLA U K, SINGH I B, SHARMA M, et al. A model of alluvial megafan sedimentation:Ganga Megafan[J]. Sedimentary Geology, 2001, 144(3/4):243-262.
[42] MUKERJI A B. Geomorphic patterns and processes in the terminal tract of inland streams in Sutlej-Yamuna plain[J]. Journal of the Geological Society of India, 1975, 16:450-459.
[43] 孟万斌,李敏,刘家铎,等.柴达木盆地北缘潜西地区路乐河组末端扇沉积体系分析[J].岩性油气藏, 2010, 22(4):37-42. MENG Wanbin, LI Min, LIU Jiaduo, et al. Terminal fan sedimentary system of Lulehe Formation in Qianxi area in northern margin of Qaidam Basin[J]. Lithologic Reservoirs, 2010, 22(4):37-42.
[44] CAIN S A, MOUNTNEY N P. Spatial and temporal evolution of a terminal fluvial fan system:The permian organ rock formation, Southeast Utah, USA[J]. Sedimentology, 2010, 56(6):1774-1800.
[45] HORTON B K, DECELLES P G. Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia:Implications for drainage network evolution in fold-thrust belts[J]. Basin Research, 2001, 13(1):43-63.
[46] NICHOLS G J, FISHER J A. Processes, facies and architecture of fluvial distributary system deposits[J]. Sedimentary Geology, 2007, 195(1/2):75-90.
[47] KIRCHNER J W. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks[J]. Geology, 1993, 21(7):591-594.
[48] 陈彦光,刘继生.水系结构的分形和分维-Horton水系定律的模型重建及其参数分析[J].地球科学进展, 2001, 16(2):178-183. CHEN Yanguang, LIU Jisheng. Fractals and fractal dimensions of structure of river systems:Models reconstruction and parameters interpretation of Horton's laws of network composition[J]. Advance in Earth Science, 2001, 16(2):178-183.
[49] 艾自兴,毋河海,谌虎,等. GIS中河网空间数据模型[J].测绘与空间地理信息, 2005, 28(6):10-12. AI Zixing, WU Hehai, CHEN Hu, et al. River net work spatial data model in GIS[J]. Geomatics & Spatial Information Technology, 2005, 28(6):10-12.
[50] 贾岸斌,佘高杰,卢舟,等.基于数字高程模型的河网和流域边界提取[J].陕西气象, 2020(2):43-47. JIA Anbin, SHE Gaojie, LU Zhou, et al. Extraction of river network and watershed boundary based on digital elevation model[J]. Journal of Shaanxi Meteorology, 2020(2):43-47.
[51] 王随继,倪晋仁,王光谦.古河型演化模式及其影响因素的沉积体系分析[J].石油勘探与开发, 2000, 27(5):102-105. WANG Suiji, NI Jinren, WANG Guangqian. Depositional system analysis on the evolution model of ancient river type and its controlling factors[J]. Petroleum Exploration and Development, 2000, 27(5):102-105.
[52] 李晓辉,杜晓峰,官大勇,等.辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J].岩性油气藏, 2022, 34(3):93-103. LI Xiaohui, DU Xiaofeng, GUAN Dayong, et al. Sedimentary characteristics of braided-meandering transitional river of Neogene Guantao Formation in northeastern Liaodong Bay Depression[J]. Lithologic Reservoirs, 2022, 34(3):93-103.
[53] 谭程鹏,于兴河,李胜利,等.辫状河-曲流河转换模式探讨:以准噶尔盆地南缘头屯河组露头为例[J].沉积学报, 2014, 32(3):450-458. TAN Chengpeng, YU Xinghe, LI Shengli, et al. Discussion on the model of braided river transform to meandering river:As an example of Toutunhe Formation in Southern Junggar Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3):450-458.
[54] 陈彬滔,于兴河,王磊,等.河流相沉积的河型转换特征与控制因素及其油气地质意义:以南苏丹Melut盆地Ruman地区坳陷期Jimidi组为例[J].沉积学报, 2020, 39(2):1-13. CHEN Bintao, YU Xinghe, WANG Lei, et al. Features and controlling factors of river pattern transition in fluvial deposition and it's significance for petroleum geology:An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan[J]. Acta Sedimentologica Sinica, 2020, 39(2):1-13.
[55] HARTLEY A J, OWEN A. Paleohydraulic analysis of an ancient distributive fluvial system[J]. Journal of Sedimentary Research, 2022, 92(5):445-459.
[56] DAVIDSON S K, HARTLEY A J, WEISSMANN G S, et al. Geomorphic elements on modern distributive fluvial systems[J]. Geomorphology, 2013, 180/181:82-95.
[57] OWEN A, NICHOLS G J, HARTLEY A J, et al. Vertical trends within the prograding Salt Wash distributive fluvial system, SW United States[J]. Basin Research, 2017, 29(1):64-80.
[58] POSAMENTIER H W, WALKER R G. Facies models revisited[J]. SEPM Society for Sedimentary Geology, 2006, 84:1-16.
[59] 谈明轩,朱筱敏,张自力,等.古"源-汇"系统沉积学问题及基本研究方法简述[J].石油与天然气地质, 2020, 41(5):1107-1118. TAN Mingxuan, ZHU Xiaomin, ZHANG Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient "Source-to-Sink" systems[J]. Oil & Gas Geology, 2020, 41(5):1107-1118.
[60] 朱筱敏,李顺利,潘荣,等.沉积学研究热点与进展:第32届国际沉积学会议综述[J].古地理学报, 2016, 18(5):699-716. ZHU Xiaomin, LI Shunli, PAN Rong, et al. Current hot topics and advances of sedimentology:Summary from 32nd IAS Meeting of Sedimentology[J]. Journal of Palaeogeography (Chinese Edition), 2016, 18(5):699-716.
[61] BILMES A, VEIGA G D. Linking mid-scale distributive fluvial systems to drainage basin area:geomorphological and sedimentological evidence from the endorheic Gastre Basin, Argentina[C]⫽VENTRA D, CLARKE L E. Geology and geomorphology of alluvial and fluvial fans:Terrestrial and planetary perspectives. London:Geological Society, 2016:440.
[62] 卢昌盛,李少华,林金成,等.一种基于目标的非贯穿型河道建模方法及系统:CN201711105289.3[P]. 2018-04-10. LU Changsheng, LI Shaohua, LIN Jincheng, et al. An objectbased modeling method for channels not across through interesting area:CN201711105289.3[P]. 2018-04-10.
[63] 苏进昌,张岚,马新福.河流相储层开发初期地质建模[J].岩性油气藏, 2008, 20(3):114-118. SU Jinchang, ZHANG Lan, MA Xinfu. Geological modeling in initial stage of development of fluvial reservoir[J]. Lithologic Reservoirs, 2008, 20(3):114-118.
[64] PYRCZ M J, BOISVERT J B, DEUTSCH C V. Alluvsim:A program for event-based stochastic modeling of fluvial depositional systems[J]. Computers & Geosciences, 2009, 35(8):1671-1685.
[65] 张文彪,段太忠,刘彦锋,等.深水浊积水道构型要素特征及三维分布模拟[J].石油与天然气地质, 2018, 39(4):801-810. ZHANG Wenbiao, DUAN Taizhong, LIU Yanfeng, et al. Characteristics and 3D distribution simulation of architecture elements in deep-water turbidity channels[J]. Oil & Gas Geology, 2018, 39(4):801-810.
[66] 吕峻岭,朱一杰,夏瑞,等.干旱型分支河流体系沉积特征与演化过程:水槽沉积模拟实验研究[J].沉积学报, 2020, 38(5):994-1005. LYU Junling, ZHU Yijie, XIA Rui, et al. Sedimentary characteristics and evolution process of arid distributive fluvial systems:Insights from a flume-tank experiment[J]. Acta Sedimentologica Sinica, 2020, 38(5):994-1005.
[67] YIN Yanshu, HU Xun, HUANG Jixin, et al. A three-dimensional model of deep-water turbidity channel in Plutonio oilfield, Angola:From training image generation, optimization to multipoint geostatistical modelling[J]. Journal of Petroleum Science and Engineering, 2020, 195:107650.
[68] COLOMBERA L. A database for the digitization of the sedimentary architecture of fluvial systems:Uses in pure and applied research[D]. England, Leeds:University of Leeds, 2013.
[69] 孙龙德,方朝亮,李峰,等.油气勘探开发中的沉积学创新与挑战[J].石油勘探与开发, 2015, 42(2):129-136. SUN Longde, FANG Chaoliang, LI Feng, et al. Innovations and challenges of sedimentology in oil and gas exploration and development[J]. Petroleum Exploration and Development, 2015, 42(2):129-136.
[70] 朱筱敏,董艳蕾,曾洪流,等.沉积地质学发展新航程:地震沉积学[J].古地理学报, 2019, 21(2):189-201. ZHU Xiaomin, DONG Yanlei, ZENG Hongliu, et al. New development trend of sedimentary geology:Seismic sedimentology[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2):189-201.
[71] 吴崇筠.中国含油气盆地沉积学[M].北京:石油工业出版社, 1992. WU Chongyun. Sedimentology of petroliferous basins in China[M]. Beijing:Petroleum Industry Press, 1992.
[72] 张服民,简宗渝.黄骅盆地早第三纪沉积史与环境特征[J].石油与天然气地质, 1981, 2(2):141-157. ZHANG Fumin, JIAN Zongyu. The sedimentation history and environmental characteristics of the Early Tertiary in Huanghua Basin[J]. Oil & Gas Geology, 1981, 2(2):141-157.
[73] 李应暹.辽河裂谷渐新世初期的扇三角洲[J].石油勘探与开发, 1982, 9(4):17-23. LI Yingxian. Early Oligocene fan-deltas in Liaohe rift[J]. Petroleum Exploration and Development, 1982, 9(4):17-23.
[74] 李勇,曹代勇,魏迎春,等.准噶尔盆地南缘中低煤阶煤层气富集成藏规律[J].石油学报, 2016, 37(12):1472-1482. LI Yong, CAO Daiyong, WEI Yingchun, et al. Middle to low rank coalbed methane accumulation and Reservoiring in the southern margin of Junggar Basin[J]. Acta Petrolei Sinica, 2016, 37(12):1472-1482.
[75] 邹才能,陶士振,朱如凯,等."连续型"气藏及其大气区形成机制与分布:以四川盆地上三叠统须家河组煤系大气区为例[J].石油勘探与开发, 2009, 36(3):307-319. ZOU Caineng, TAO Shizhen, ZHU Rukai, et al. Formation and distribution of "continuous" gas reservoirs and their giant gas province:A case from the Upper Triassic Xujiahe Formation giant gas province, Sichuan Basin[J]. Petroleum Exploration and Development, 2009, 36(3):307-319.
[76] 郑荣才,李国辉,常海亮,等.四川盆地东部上三叠统须家河组层序-岩相古地理特征[J].中国地质, 2015, 42(4):1024-1036. ZHENG Rongcai, LI Guohui, CHANG Hailiang, et al. Sedimentary sequence and paleogeographic characteristics of the Upper Triassic Xujiahe Formation in eastern Sichuan Basin[J]. Geology in China, 2015, 42(4):1024-1036.
[77] 付锁堂.柴达木盆地油气勘探潜在领域[J].中国石油勘探, 2016, 21(5):1-10. FU Suotang. Potential oil and gas exploration areas in Qaidam Basin[J]. China Petroleum Exploration, 2016, 21(5):1-10.
[78] 何登发,马永生,蔡勋育,等.中国西部海相盆地地质结构控制油气分布的比较研究[J].岩石学报, 2017, 33(4):1037-1057. HE Dengfa, MA Yongsheng, CAI Xunyu, et al. Comparison study on controls of geologic structural framework upon hydrocarbon distribution of marine basins in western China[J]. Acta Petrologica Sinica, 2017, 33(4):1037-1057.
[79] 裘怿楠,贾爱林.储层地质模型10年[J].石油学报, 2000, 21(4):101-104. QIU Yinan,JIA Ailin. Development of geological reservoir modeling in past decade[J]. Acta Petrolei Sinica, 2000, 21(4):101-104.
[80] 吴胜和,翟瑞,李宇鹏.地下储层构型表征:现状与展望[J].地学前缘, 2012, 19(2):15-23. WU Shenghe, ZHAI Rui, LI Yupeng. Subsurface reservoir architecture characterization:Current status and prospects[J]. Earth Science Frontiers, 2012, 19(2):15-23.
[81] 李阳,吴胜和,侯加根,等.油气藏开发地质研究进展与展望[J].石油勘探与开发, 2017, 44(4):569-579. LI Yang, WU Shenghe, HOU Jiagen, et al. Progress and prospects of reservoir development geology[J]. Petroleum Exploration and Development, 2017, 44(4):569-579.
[82] 支东明,唐勇,何文军,等.准噶尔盆地玛湖凹陷风城组常规-非常规油气有序共生与全油气系统成藏模式[J].石油勘探与开发, 2021, 48(1):1-14. ZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar Basin[J]. Petroleum Exploration and Development, 2021, 48(1):1-14.
[83] 曾治平,柳忠泉,赵乐强,等.准噶尔盆地西北缘哈山地区二叠系风城组页岩油储层特征及其控制因素[J].岩性油气藏, 2023, 35(1):25-35. ZENG Zhiping, LIU Zhongquan, ZHAO Leqiang, et al. Shale oil reservoir characteristics and controlling factors of Permian Fengcheng Formation in Hashan area, northwestern margin of Junggar Basin[J]. Lithologic Reservoirs, 2023, 35(1):25-35.
[84] 邹才能,杨智,张国生,等.常规-非常规油气"有序聚集"理论认识及实践意义[J].石油勘探与开发, 2014, 41(1):14-27. ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum "orderly accumulation":Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1):14-27.
[85] 付金华,李士祥,徐黎明,等.鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J].石油勘探与开发, 2018, 45(6):936-946. FU Jinhua, LI Shixiang, XU Liming, et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6):936-946.
[86] BUEHLER H A, WEISSMANN G S, SCUDERI L A, et al. Spatial and temporal evolution of an avulsion on the Taquari river distributive fluvial system from satellite image analysis[J]. Journal of Sedimentary Research, 2011, 81(8):630-640.
[87] SAVI S, TOFELDE S, WICKERT A D, et al. Interactions between main channels and tributary alluvial fans:Channel adjustments and sediment-signal propagation[J]. Earth Surface Dynamics, 2020, 8(2):303-322.
[88] VALENZA J M, EDMONDS D A, HWANG T, et al. Downstream changes in river avulsion style are related to channel morphology[J]. Nature Communications, 2020, 11(1):2116.
[89] ZANIA H, ASSINE M L, MCGLUE M M. Remote sensing analysis of depositional landforms in alluvial settings:Method development and application to the Taquari megafan, Pantanal (Brazil)[J]. Geomorphology, 2012, 82(9):161-162.
[90] LAWTON T F, SCHELLENBACH W L, NUGENT A E. Late Cretaceous fluvial-megafan and axial-river systems in the southern Cordilleran Foreland basin:Drip tank member of straight cliffs formation and adjacent strata, Southern Utah, U.S.A.[J]. Journal of Sedimentary Research, 2014, 84(5):407-434.
[91] 贾爱林,郭智,郭建林,等.中国储层地质模型30年[J].石油学报, 2021, 42(11):1506-1515. JIA Ailin, GUO Zhi, GUO Jianlin, et al. Research achievements on reservoir geological modeling of China in the past three decades[J]. Acta Petrolei Sinica, 2021, 42(11):1506-1515.
[92] 刘永立,尤东华,李海英,等.超深层碳酸盐岩层系硅质岩储层表征与评价:以塔里木盆地塔深6井为例[J].石油与天然气地质, 2021, 42(3):547-556. LIU Yongli, YOU Donghua, LI Haiying, et al. Characterization and evaluation of chert reservoirs in ultra-deep carbonate rock formations:A case study on Well TS6 in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3):547-556.
[93] 李霞,王铜山,王建新.储层随机建模研究进展[J].物探化探计算技术, 2009, 31(5):454-459. LI Xia, WANG Tongshan, WANG Jianxin. Advancement of reservoir stochastic modeling methods[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2009, 31(5):454-459.
[1] 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56.
[2] 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42.
[3] 张昌民, 张祥辉, 王庆, 冯文杰, 李少华, 易雪斐, Adrian J. HARTLEY. 分支河流体系沉积学工作框架与流程[J]. 岩性油气藏, 2024, 36(1): 1-13.
[4] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[5] 刘国勇, 许多年, 胡婷婷, 潘树新, 潘拓, 王国栋, 马永平, 关新. 准噶尔盆地沙湾凹陷侏罗系八道湾组滩砂的发现及石油地质意义[J]. 岩性油气藏, 2023, 35(5): 1-10.
[6] 付文俊, 张昌民, 冀东升, 娄林, 刘家乐, 王绪龙. 准噶尔盆地南安集海河剖面中侏罗统头屯河组浅水三角洲沉积特征[J]. 岩性油气藏, 2023, 35(4): 145-160.
[7] 张昌民, 张祥辉, ADRIAN J. Hartley, 冯文杰, 尹太举, 尹艳树, 朱锐. 分支河流体系分类初探[J]. 岩性油气藏, 2023, 35(4): 1-15.
[8] 刘宗堡, 李雪, 郑荣华, 刘化清, 杨占龙, 曹松. 浅水三角洲前缘亚相储层沉积特征及沉积模式——以大庆长垣萨北油田北二区萨葡高油层为例[J]. 岩性油气藏, 2022, 34(1): 1-13.
[9] 彭军, 褚江天, 陈友莲, 文舰, 李亚丁, 邓思思. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征[J]. 岩性油气藏, 2020, 32(4): 12-22.
[10] 黄健玲, 傅强, 邱旭明, 赵世杰, 李林祥. 咸化断陷湖盆混积岩特征及沉积模式——以金湖凹陷阜二段为例[J]. 岩性油气藏, 2020, 32(2): 54-66.
[11] 张家强, 李士祥, 周新平, 梁益财, 郭睿良, 闫灿灿, 陈俊霖, 李树同. 志丹地区长82砂层组缓坡浅水三角洲前缘砂体发育模式及成因[J]. 岩性油气藏, 2020, 32(1): 36-50.
[12] 陈彬滔, 史忠生, 薛罗, 马轮, 赵艳军, 何巍巍, 王磊, 史江龙. 古潜山周缘滩坝沉积模式与岩性油藏勘探实践——以南苏丹Melut盆地Ruman地区Galhak组为例[J]. 岩性油气藏, 2018, 30(6): 37-44.
[13] 仲米虹, 唐武. 前陆盆地隆后坳陷区湖底扇沉积特征及主控因素——以塔北轮南地区三叠系为例[J]. 岩性油气藏, 2018, 30(5): 18-28.
[14] 张昌民, 胡威, 朱锐, 王绪龙, 侯国伟. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏, 2017, 29(3): 1-9.
[15] 吴嘉鹏, 万丽芬, 张兰, 王英民, 赵千慧, 李昆, 王思琦. 西湖凹陷平湖组岩相类型及沉积相分析[J]. 岩性油气藏, 2017, 29(1): 27-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .