岩性油气藏 ›› 2024, Vol. 36 ›› Issue (1): 1–13.doi: 10.12108/yxyqc.20240101

• 地质勘探 • 上一篇    下一篇

分支河流体系沉积学工作框架与流程

张昌民1, 张祥辉1, 王庆1, 冯文杰1, 李少华1, 易雪斐1, Adrian J. HARTLEY2   

  1. 1. 长江大学 地球科学学院, 武汉 430100;
    2. 阿伯丁大学 地球科学学院, 英国 苏格兰 阿伯丁 AB24 3 UE
  • 收稿日期:2022-09-15 修回日期:2022-10-28 出版日期:2024-01-01 发布日期:2024-01-02
  • 第一作者:张昌民(1963-),男,博士,教授,主要从事沉积学与石油地质学方面的科研和教学工作。地址:(430100)湖北省武汉市蔡甸区大学路111号长江大学地球科学学院。Email:zcm@yangtzeu.edu.cn。
  • 通信作者: 张祥辉(1993-),男,长江大学在读博士研究生,研究方向为河流沉积学。Email:zxhedu@126.com。
  • 基金资助:
    国家自然科学基金重点项目“分支河流体系沉积模式与储层定量预测模型”(编号:42130813)资助。

Research framework for distributive fluvial system

ZHANG Changmin1, ZHANG Xianghui1, WANG Qing1, FENG Wenjie1, LI Shaohua1, YI Xuefei1, Adrian J. HARTLEY2   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. School of Geosciences, University of Aberdeen, Aberdeen AB24 3 UE, UK
  • Received:2022-09-15 Revised:2022-10-28 Online:2024-01-01 Published:2024-01-02

摘要: 基于现有的研究成果和存在的问题,探讨了分支河流体系(DFS)研究中的关键科学问题、主要研究内容、研究方法和工作流程。研究结果表明: ①DFS研究中最关键的3个科学问题是明确河网结构和河型演变规律、构建沉积标志和沉积模式、分析其形成和分布的控制因素。②DFS研究的主要内容包括建设形态沉积学数据库、现代沉积机理研究、分类研究、建立沉积模式、储层建模与储层预测等5个方面。③DFS研究中的关键技术包括基于遥感图像的形态数据采集、形成机理的水槽和模拟实验、河网重构、顶点位置预测与河道分汊点自动生成方法、储层建模知识库平台等。④DFS研究的基本工作流程是先建立形态沉积学数据库,搭建数据库软件平台,在此基础上选择具有代表性的DFS进行现代沉积解剖,然后综合现代沉积调查、露头解剖和模拟实验成果,形成分类体系,总结各类DFS的识别标志和沉积模式,分层次建立储层预测模型,形成沉积结构储层预测模型的建模软件平台,从而预测沉积体系中有利储层的分布。

关键词: 分支河流体系, 河网重构, 储层建模, 水槽沉积模拟, 数据采集, DFS形态沉积学数据库

Abstract: Based on the existing research results and shortcomings of distributive fluvial system(DFS), the key scientific issues, main research contents, research methods and workflow in DFS research were discussed. The results show that:(1) There are three critical scientific issues in DFS sedimentology research including modelling the river channel network and their evolution, constructing sedimentary model and analyzing the control factors influencing DFS formation and distribution.(2) The main directions in DFS research are to build sedimentological database, to study on modern DFS deposition mechanism and DFS classification, and to establish DFS sedimentary model, DFS reservoir modeling and reservoir prediction.(3) The key technologies necessary to strengthen the research include DFS morphological and sedimentological data collection based on remote sensing images, flume experiment and digital simulation of DFS formation mechanism, DFS river channel network reconstruction, DFS apex estimation and automatic branching point prediction and DFS reservoir modeling knowledge base construction.(4) The work processes of DFS research have three main steps in which the first step is to establish the DFS geomorphological and sedimentological data base and the related software platform, the second step is to carry out DFS classification by integrating the modern sedimentary investigation, outcrop anatomy and simulation experiment research, and the final is to summarize the facies identification marks and to build the sedimentary models of various DFS. Based on the above, the reservoir prediction models and the software platform can be established for hierarchically reservoir modeling, so as to predict the favorable reservoir distribution in depositional system.

Key words: distributive fluvial system, river network reconstruction, reservoir modeling, flume experiment, data acquisition, DFS sedimentology database

中图分类号: 

  • TE122
[1] WEISSMANN G S, HARTLEY A J, NICHOLS G J, et al. Fluvial form in modern continental sedimentary basins:Distributive fluvial systems[J]. Geology, 2010, 38(1):39-42.
[2] HARTLEY A J,WEISSMANN G S,NICHOLS G J,et al. Large distributive fluvial systems:Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2):167-183.
[3] 张祥辉, 张昌民, 冯文杰, 等. 苏干湖盆地周缘分支河流体系的几何形态及影响因素分析[J]. 地质学报, 2019, 93(11):2947-2959. ZHANG Xianghui, ZHANG Changmin, FENG Wenjie, et al. Geometry and control factors of distributive fluvial system around the Sugan Lake Basin[J]. Acta Geologica Sinica, 2019, 93(11):2947-2959.
[4] 张祥辉, 张昌民, 冯文杰, 等. 干旱地区分支河流体系沉积特征:以疏勒河分支河流体系为例[J]. 石油勘探与开发, 2021, 48(4):756-767. ZHANG Xianghui, ZHANG Changmin, FENG Wenjie, et al. Sedimentary characteristics of distributive fluvial system in arid area:A case study of the Shule river distributive fluvial system[J]. Petroleum Exploration and Development, 2021, 48(4):756-767.
[5] 石雨昕, 高志勇, 周川闽, 等. 新疆博斯腾湖北缘现代冲积扇与扇三角洲平原分支河流体系的沉积特征与意义[J]. 石油学报, 2019, 40(5):542-556. SHI Yuxin, GAO Zhiyong, ZHOU Chuanmin, et al. Sedimentary characteristics and significance of distributive fluvial system of modern alluvial fan and fan delta plain in the northern margin of Bosten Lake, Xinjiang[J]. Acta Petrolei Sinica, 2019, 40(5):542-556.
[6] OWEN A, NICHOLS G, HARTLEY A J, et al. Quantification of a distributive fluvial system:The salt wash DFS of the Morrison Formation, SW U.S.A[J]. Journal of Sedimentary Research, 2015, 85(5):544-561.
[7] 李相博, 刘化清, 邓秀芹, 等. 干旱环境河流扇概念与鄂尔多斯盆地延长组"满盆砂" 成因新解[J]. 沉积学报, 2021, 39(5):1208-1221. LI Xiangbo, LIU Huaqing, DENG Xiuqin, et al. The concept of fluvial fans in an arid environment:A new explanation of the origin of "sand-filled basins" in the Yanchang Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5):1208-1221.
[8] 何苗, 秦兰芝, 尹太举, 等. 分支河流体系在东海西湖凹陷南部的运用及其对油气潜力的指示[J]. 中国地质, 2021, 48(3):820-831. HE Miao, QIN Lanzhi, YIN Taiju, et al. The application of the distributive fluvial system in the south Xihu depression, East China Sea and its indication of oil and gas potential[J]. Geology in China, 2021, 48(3):820-831.
[9] ADELI S, HAUBER E, KLEINHANS M, et al. Amazonianaged fluvial system and associated ice-related features in Terra Cimmeria, Mars[J]. Icarus, 2016, 277:286-299.
[10] BILMES, ANDRÉS V G. Linking mid-scale distributive fluvial systems to drainage basin area:Geomorphological and sedimentological evidence from the endorheic Gastre Basin, Argentina[M]. London:Geological Society, 2016:440.
[11] 李新坡. 中国北方地区冲积扇地貌发育特征与影响因素分析[D]. 北京:北京大学, 2007. LI Xinpo. Analysis on the development characteristics and influencing factors of alluvial fan landform in northern China[D]. Beijing:Peking University, 2007.
[12] ASSINE M L, MACEDO H A, STEVAUX J C, et al. Avulsive rivers in the hydrology of the Pantanal Wetland[M]//BERGIER I, ASSINE M. The handbook of environmental chemistry:Dynamics of the Pantanal wetland in south America. Berlin:Spring-Verlag, 2015:37.
[13] ROSSETTI, ZANI D, COHEN H, et al. A Late PleistoceneHolocene wetland megafan in the Brazilian Amazonia[J]. Sedimentary Geology, 2012, 282:276-293.
[14] DAVIDSON S K, HARTLEY A J, WEISSMANN G S, et al. Geomorphic elements on modern distributive fluvial systems[J]. Geomorphology, 2013, 180/181:82-95.
[15] OWEN A, NICHOLS G J, HARTLEY A J, et al. Vertical trends within the prograding Salt Wash distributive fluvial system, SW United States[J]. Basin Research, 2017, 29(1):64-80.
[16] FIELDING C R, ASHWORTH P J, BEST J L, et al. Tributary, distributary and other fluvial patterns:What really represents the norm in the continental rock record?[J]. Sedimentary Geology, 2012, 261(15):15-32.
[17] WEISSMANN G S, HARTLEY A J, SCUDERI L A, et al. Prograding distributive fluvial systems geomorphic models and ancient examples[M]//DRIESE S G, NORDT L C. New frontiers in paleopedology and terrestrial paleoclimatology:Palcools and soil surface analog systems. Tulsa:Society for Sedimentary Geology, 2013:131-147.
[18] HARTLEY A J, WEISSMANN G S, NICHOLS G J, et al. Fluvial form in modern continental sedimentary basins:Distributive fluvial systems:Reply[J]. Geology, 2010, 38(12):231.
[19] 张昌民, 胡威, 朱锐, 等. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏, 2017, 29(3):1-9. ZHANG Changmin, HU Wei, ZHU Rui, et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 2017, 29(3):1-9.
[20] 张昌民, 宋新民, 支东明, 等. 陆相含油气盆地沉积体系再思考:来自分支河流体系的启示[J]. 石油学报, 2020, 41(2):127-153. ZHANG Changmin, SONG Xinmin, ZHI Dongming, et al. Rethinking on the sedimentary system of terrestrial petroliferous basins:Insights from distributive fluvial system[J]. Acta Petrolei Sinica, 2020, 41(2):127-153.
[21] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2):129-136. JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2):129-136.
[22] 王拓, 朱如凯, 白斌, 等. 非常规油气勘探、评价和开发新方法[J]. 岩性油气藏, 2013, 25(6):35-39. WANG Tuo, ZHU Rukai, BAI Bin, et al. New methods for the exploration, evaluation and development of unconventional reservoirs[J]. Lithologic Reservoirs, 2013, 25(6):35-39.
[23] 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020, 25(1):31-44. ZHAO Wenzhi, JIA Ailin, WEI Yunsheng, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1):31-44.
[24] 戴金星. 我国天然气资源及其前景[J]. 天然气工业, 1999, 19(1):27-30. DAI Jinxing. Natural gas resources and their prospects in China[J]. Natural Gas Industry, 1999, 19(1):27-30.
[25] 邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6):979-1007. ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6):979-1007.
[26] 刘化清, 刘宗堡, 吴孔友, 等. 岩性地层油气藏区带及圈闭评价技术研究新进展[J].岩性油气藏, 2021, 33(1):25-36. LIU Huaqing, LIU Zongbao, WU Kongyou, et al. New progress in study of play and trap evaluation technology for lithostratigraphic reservoirs[J]. Lithologic Reservoirs, 2021, 33(1):25-36.
[27] WALKER R G, JAMES N P. Facies models:Response to sea level change[M]. St John's Newfoundland:Geological Association of Canada, 1992.
[28] 吴崇筠. 中国含油气盆地沉积学[M]. 北京:石油工业出版社, 1992. WU Chongyun. Sedimentology of oil-gas bearing basins in China[M]. Beijing:Petroleum Industry Press, 1992.
[29] READING H G. Sedimentary environments:Processes, facies and stratigraphy[M]. 3rd ed.Oxford:Blackwell Science, 1996.
[30] 高志勇, 周川闽, 冯佳睿, 等. 盆地内大面积砂体分布的一种成因机理:干旱气候下季节性河流沉积[J]. 沉积学报, 2015, 33(3):427-438. GAO Zhiyong, ZHOU Chuanmin, FENG Jiarui, et al. Distribution of a large area of sand body formation mechanism:Ephemeral streams in arid climate[J]. Acta Sedimentologica Sinica, 2015, 33(3):427-438.
[31] 张昌民, 朱锐, 赵康, 等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报, 2017, 35(5):926-944. ZHANG Changmin, ZHU Rui, ZHAO Kang, et al. From end member to continuum:Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5):926-944.
[32] 李晓辉, 杜晓峰, 官大勇, 等. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3):93-103. LI Xiaohui, DU Xiaofeng, GUAN Dayong, et al. Sedimentary characteristics of braided-meandering transitional river of Neogene Guantao Formation in northeastern Liaodong Bay Depression[J]. Lithologic Reservoirs, 2022, 34(3):93-103.
[33] 王光谦, 方红卫, 倪广恒, 等. 大江大河源区河网结构与径流特性研究前沿和重要基础科学问题[J]. 中国科学基金, 2016, 30(1):27-33. WANG Guangqian, FANG Hongwei, NI Guangheng, et al. River networks and runoff characteristics in Tibetan Plateau:Advancements and future strategies[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(1):27-33.
[34] MIALL A D. Architectural-element analysis:A new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4):261-308.
[35] 吴嘉鹏, 万丽芬, 张兰, 等. 西湖凹陷平湖组岩相类型及沉积相分析[J]. 岩性油气藏, 2017, 29(1):27-34. WU Jiapeng, WAN Lifen, ZHANG Lan, et al. Lithofacies types and sedimentary facies of Pinghu Formation in Xihu Depression[J]. Lithologic Reservoirs, 2017, 29(1):27-34.
[36] ALESSANDRO B, FRANCISCO L, DIEGO N, et al. Facies and palaeosol analysis in a progradational distributive fluvial system from the Campanian-Maastrichtian Bauru Group, Brazil[J]. Sedimentology, 2018:66.
[37] MCKELLAR Z,HARTLEY A J. Caledonian foreland basin sedimentation:A new depositional model for the upper silurianlower devonian lower old red sandstone of the Midland Valley Basin, Scotland[J]. Basin Research, 2020, 33:754-778.
[38] 白振华, 詹燕涛, 王赢, 等. 苏里格气田苏14井区盒8段河流相砂体展布与演化规律研究[J]. 岩性油气藏, 2013, 25(1):56-62. BAI Zhenhua, ZHAN Yantao, WANG Ying, et al. Fluvial sand bodies distribution and evolution of He 8 member in Su 14 block of Sulige gas field[J]. Lithologic Reservoirs, 2013, 25(1):56-62.
[39] 李新坡, 莫多闻, 朱忠礼. 侯马盆地冲积扇及其流域地貌发育规律[J]. 地理学报, 2006, 61(3):241-248. LI Xinpo, MO Duowen, ZHU Zhongli. Developments of alluvial fans and their catchments in Houma Basin[J]. Acta Geographica Sinica, 2006, 61(3):241-248.
[40] DAVIDSON S K, HARTLEY A J. A quantitative approach to linking drainage area and distributive-fluvial-system area in modern and ancient Endorheic Basins[J]. Journal of Sedimentary Research, 2014, 84(11):1005-1020.
[41] 吴胜和, 冯文杰,印森林, 等. 冲积扇沉积构型研究进展[J]. 古地理学报, 2016, 18(4):497-512.WU Shenghe, FENG Wenjie, YIN Senlin, et al. Research advances in alluvial fan depositional architecture[J]. Journal of Palaeogeography(Chinese Edition), 2016, 18(4):497-512.
[42] PETERS S E, HUSSON J M. We need a global comprehensive stratigraphic database here' sastart[J]. The Sedimentary Record, 2018, 16(1):4-9.
[43] 蒋璟鑫, 李超, 胡修棉. 沉积学数据库建设与沉积大数据科学研究进展:以Macrostrat数据库为例[J]. 高校地质学报, 2020, 26(1):27-43. JIANG Jingxin, LI Chao, HU Xiumian. Advances on sedimentary database building and related research:Macrostrat as an example[J]. Geological Journal of China Universities, 2020, 26(1):27-43.
[44] BRAND L, WANG M M, CHADWICK A. Global database of paleocurrent trends through the Phanerozoic and Precambrian[J]. Science Data, 2015, 2:150025.
[45] DUTKIEWICZ A, MÜLLER R D, CALLAGHAN S O, et al. Census of seafloor sediments in the world's ocean[J]. Geology, 2015, 43(9):795-798.
[46] MCMAHON W J, DAVIES N S. Evolution of alluvial mudrock forced by early land plants[J]. Science, 2018, 359(6379):1022-1024.
[47] 张祥辉. 苏干湖盆地周缘现代分支河流体系特征及分布[D]. 武汉:长江大学, 2020. ZHANG Xianghui. Characteristics and distribution of modern branch river systems in the periphery of Suganhu Basin[D]. Wuhan:Yangtze University, 2020.
[48] 李鑫鑫. 河流扇沉积数据库的构建及应用[D]. 北京:中国地质大学(北京), 2021. LI Xinxin. Construction and application of fluvial fan deposition database[D]. Beijing:China University of Geosciences(Beijing), 2021.
[49] 黄若鑫, 张昌民, 冯文杰. 冲断带构造作用控制下的分支河流体系特征及其成因分析:以塔里木盆地西北缘柯坪地区为例[J]. 沉积学报, 2022, 40(1):166-181. HUANG Ruoxin, ZHANG Changmin, FENG Wenjie. Characteristics and factor analysis of distributive fluvial systems due to tectonic Thrust Belt Activity:Example of Keping area, northwestern Tarim Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1):166-181.
[50] SNIEDER S, GRIFFITHS C, OWEN A, et al. Stratigraphic forward modelling of distributive fluvial systems based on the Huesca System, Ebro Basin, Northern Spain[J]. Basin Research, 2021, 33:3137-3158.
[51] TERWISSCHA S R, MCMAHON W, VAN D W, et al. Experimental distributive fluvial systems:Bridging the gap between river and rock record[J]. The Depositional Record, 2020, 6:670-684.
[52] CHESLEY J T, LEIER A L, WHITE S, et al. Using unmanned aerial vehicles and structure-from-motion photogrammetry to characterize sedimentary outcrops:An example from the Morrison Formation, Utah, U.S.A[. J]. Sedimentary Geology, 2017, 354:1-8.
[53] ZHANG Xianghui, ZHANG Changmin, FENG Wenjie, et al. Application of remote sensing in the description of fluvial system in dryland:A case study of Golmud distributive fluvial system, Qaidam Basin, NW China[J]. Journal of Palaeogeography, 2022, 11(4):1-27.
[54] ZANI A H, ASSINE M L, MCGLUE M M. Remote sensing analysis of depositional landforms in alluvial settings:Method development and application to the Taquari megafan, Pantanal (Brazil)[J]. Geomorphology, 2012, 82(9):161-162.
[55] 李相博, 刘化清, 黄军平, 等. 干湿气候交替与内陆湖盆河流扇砂体的形成与分布:以鄂尔多斯盆地延长组为例[J]. 地质学报, 2023, 97(3):822-838. LI Xiangbo, LIU Huaqing, HUANG Junping, et al. Alternation of arid-humid climate and formation and distribution of fluvial fan sand in the central area of Inland Lake basin:Taking Yanchang Formation in Ordos Basin as an example[J]. Acta Geologica Sinica, 2023, 97(3):822-838.
[56] LEIER A L, DECELLES P G, PELLETIER J D. Mountains, monsoons, and megafans[J]. Geology, 2005, 33(4):289-292.
[57] BLAIR T C, MCPHERSON J G. Alluvial fan processes and forms[M]//ABRAHAMS A D, PARSONS A J. Geomorphology of desert environments. Dordrecht:Springer, 1994:354-402.
[58] 张元福, 戴鑫, 王敏, 等. 河流扇的概念、特征及意义[J]. 石油勘探与开发, 2020, 47(5):947-957. ZHANG Yuanfu, DAI Xin, WANG Min, et al. The concept, characteristics and significance of fluvial fans[J]. Petroleum Exploration and Development, 2020, 47(5):947-957.
[59] 王随继, 任明达. 根据河道形态和沉积物特征的河流新分类[J]. 沉积学报, 1999, 17(2):75-81. WANG Suiji, REN Mingda. A new classification of fluvial rivers according to channel planform and sediment characteristics[J]. Acta Sedimentologica Sinica, 1999, 17(2):75-81.
[60] ADRIANO D, CLAITON M, OWEN A, et al. A quantitative depositional model of a large distributive fluvial system(Megafan) with terminal aeolian interaction:The Upper Jurassic Guará DFS in southwestern Gondwana[J]. Journal of Sedimentary Research, 2022, 92(5):460-485.
[61] 李少华, 张昌民, 林克湘, 等. 储层建模中几种原型模型的建立[J]. 沉积与特提斯地质, 2004, 24(3):102-107. LI Shaohua, ZHANG Changmin, LIN Kexiang, et al. The construction of prototype models in reservoir modeling[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(3):102-107.
[62] 李霞, 王铜山, 王建新. 储层随机建模研究进展[J]. 物探化探计算技术, 2009, 31(5):454-459. LI Xia, WANG Tongshan, WANG Jianxin. Advancement of reservoir stochastic modeling methods[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2009, 31(5):454-459.
[63] 吴胜和, 李宇鹏. 储层地质建模的现状与展望[J]. 海相油气地质, 2007, 12(3):53-60. WU Shenghe, LI Yupeng. Reservoir modeling:Current situation and development prospect[J]. Marine Origin Petroleum Geology, 2007, 12(3):53-60.
[64] COMUNIAN A, RENARD P, STRAUBHAAR J. 3D multiplepoint statistics simulation using 2D training images[J]. Computers & Geosciences, 2012, 40:49-65.
[65] CHEN Qiyu, MARIETHOZ G, LIU Gang, et al. Locality-based 3D multiple-point statistics reconstruction using 2D geological cross-sections[J]. Hydrology and Earth System Sciences, 2018,22(12):6547-6566.
[66] 王立鑫, 尹艳树, 王晖, 等. 基于自适应空间抽样由二维剖面重构三维地质模型的方法:以加拿大某区块McMurray组储集层为例[J]. 石油勘探与开发, 2021, 48(2):347-359. WANG Lixin, YIN Yanshu, WANG Hui, et al. A method of reconstructing 3D model from 2D geological cross-section based on self-adaptive spatial sampling:A case study of Cretaceous McMurray reservoirs in a block of Canada[J]. Petroleum Exploration and Development, 2021, 48(2):347-359.
[67] HOU Weisheng, LIU Hengguang, ZHENG Tiancheng, et al. Hierarchical MPS-based three-dimensional geological structure reconstruction with two-dimensional image(s)[J]. Earth Science, 2021, 32(2):455-467.
[68] 尹艳树, 张昌民, 石书缘, 等. 综合随机游走过程与多点统计的河流相建模新方法[J]. 石油天然气学报, 2011, 33(8):44-47. YIN Yanshu, ZHANG Changmin, SHI Shuyuan, et al. Modeling on integrating random walk process and multiple-point geostatistics to fluvial reservoirs[J]. Journal of Oil and Gas Technology, 2011, 33(8):44-47.
[69] 李少华, 卢文涛. 基于沉积过程的储集层随机建模方法:以河流相储集层为例[J]. 古地理学报, 2011, 13(3):325-333. LI Shaohua, LU Wentao. Depositional process-based reservoir stochastic modeling:A case of fluvial reservoir modeling[J]. Journal of Palaeogeography, 2011, 13(3):325-333.
[70] ZHANG Tuanfeng, TILKE P, DUPONT E, et al. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks[J]. Petroleum Science, 2019, 16(3):541-549.
[71] SONG Suihong, MUKERJI T, HOU Jiagen. GANSim:Conditional facies simulation using an improved progressive growing of generative adversarial networks(GANs)[J]. Mathematical Geosciences, 2021, 53:1413-1444.
[72] 张昌民. 储层研究中的层次分析法[J]. 石油与天然气地质, 1992, 13(3):344-350. ZHANG Changmin. Hierarchy analysis in reservoir researches[J]. Oil & Gas Geology, 1992, 13(3):344-350.
[73] 尹艳树, 张昌民, 尹太举, 等. 萨尔图油田辫状河储层三维层次建模[J]. 西南石油大学学报, 2012, 34(1):13-18. YIN Yanshu, ZHANG Changmin, YIN Taiju, et al. 3D hierarchical modeling of the braided channel reservoir of Saertu oilfield[J]. Journal of Southwest Petroleum University, 2012, 34(1):13-18.
[74] WANG Yudie, LI Zhiwei, ZENG Chao, et al. An urban water extraction method combining deep learning and Google Earth engine[J]. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:769-782.
[75] 龚健雅, 许越, 胡翔云, 等. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8):1013-1022. GONG Jianya, XU Yue, HU Xiangyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1013-1022.
[76] 王庆, 曾齐红, 张友焱, 等. 基于多尺度区域卷积神经网络的露头孔洞自动提取[J]. 现代地质, 2021, 35(4):1147-1154. WANG Qing, ZENG Qihong, ZHANG Youyan, et al. Automatic extraction of outcrop cavity based on multi-scale regional convolution neural network[J]. Geoscience, 2021, 35(4):1147-1154.
[77] WU Siqi, WANG Qing, ZENG Qihong, et al. Automatic extraction of outcrop cavity based on a multiscale regional convolution neural network[J]. Computers & Geosciences, 2022, 160:105038.
[78] 张立锋, 程钢, 白鸿起. 基于Delaunay三角网的河流中线提取方法[J]. 测绘与空间地理信息, 2006, 29(4):80-82. ZHANG Lifeng, CHENG Gang, BAI Hongqi. Extracting the medial axis of the double line river by using Delaunay Triangulations[J]. Geomatics & Spatial Information Technology, 2006, 29(4):80-82.
[79] 李珏. 基于高分辨率影像的河流及其中心线提取[D]. 武汉:武汉大学, 2017. LI Jue. River and its center line extraction based on high-resolution image[D]. Wuhan:Wuhan University, 2017.
[80] 刘怀湘, 王兆印. 典型河网形态特征与分布[J]. 水利学报, 2007, 38(11):1354-1357. LIU Huaixiang, WANG Zhaoyin. Morphological feature and distribution of typical river networks[J]. Journal of Hydraulic Engineering, 2007, 38(11):1354-1357.
[81] 陈彦光, 刘继生. 水系结构的分形和分维:Horton水系定律的模型重建及其参数分析[J]. 地球科学进展, 2001, 16(2):178-183. CHEN Yanguang, LIU Jisheng. Fractals and fractal dimensions of structure of river systems:Models reconstruction and parameters interpretation of Horton's Laws of network composition[J]. Advance in Earth Science, 2001, 16(2):178-183.
[82] OWEN A, JUPP P E, NICHOLS G J, et al. Statistical estimation of the position of an apex:Application to the geological record[J]. Journal of Sedimentary Research, 2015, 85(2):142-152.
[83] 刘显太. 三角洲储层地质知识库系统设计与实现[M]. 北京:石油工业出版社, 2014. LIU Xiantai. Design and implementation of delta reservoir geological knowledge base system[M]. Beijing:Petroleum Industry Press, 2014.
[84] COSGROVE G, COLOMBERA L, MOUNTNEY N P. A database of aeolian sedimentary architecture for the characterization of modern and ancient sedimentary systems[J]. Marine and Petroleum Geology, 2021:127:104983.
[85] 何治亮, 孙建芳, 郭攀红, 等. 碳酸盐岩储集层知识库构建方法及在缝洞型油藏地质建模中的应用[J]. 石油勘探与开发, 2021, 48(4):1-9. HE Zhiliang, SUN Jianfang, GUO Panhong, et al. Construction method of carbonate reservoir knowledge base and its application in fracture-cavity reservoir geological modeling[J]. Petroleum Exploration and Development, 2021, 48(4):1-9.
[1] 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56.
[2] 张昌民, 张祥辉, 朱锐, 冯文杰, 尹太举, 尹艳树, Adrian J. HARTLEY. 分支河流体系研究进展及应用前景展望[J]. 岩性油气藏, 2023, 35(5): 11-25.
[3] 张昌民, 张祥辉, ADRIAN J. Hartley, 冯文杰, 尹太举, 尹艳树, 朱锐. 分支河流体系分类初探[J]. 岩性油气藏, 2023, 35(4): 1-15.
[4] 张昌民, 胡威, 朱锐, 王绪龙, 侯国伟. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏, 2017, 29(3): 1-9.
[5] 卫平生,潘建国,谭开俊,王伟锋,许多年,高斌. 地震储层学研究的“四步法”及其应用———以准噶尔盆地裂隙式喷发火成岩地震储层学研究为例[J]. 岩性油气藏, 2012, 24(6): 10-16.
[6] 谭开俊,卫平生,潘建国,张虎权. 火山岩地震储层学[J]. 岩性油气藏, 2010, 22(4): 8-13.
[7] 卫平生,潘建国,张虎权,谭开俊. 地震储层学的概念、研究方法和关键技术[J]. 岩性油气藏, 2010, 22(2): 1-6.
[8] 熊翥. 地层岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(4): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .