岩性油气藏 ›› 2017, Vol. 29 ›› Issue (3): 1–9.doi: 10.3969/j.issn.1673-8926.2017.03.001

• 论坛与综述 •    下一篇

分支河流体系的概念及其对油气勘探开发的意义

张昌民1, 胡威1, 朱锐1, 王绪龙2, 侯国伟3   

  1. 1. 长江大学 地球科学学院, 武汉 430100;
    2. 中国石油新疆油田分公司 勘探开发研究院, 新疆 克拉玛依 834000;
    3. 中海石油(中国)有限公司 上海分公司, 上海 200030
  • 收稿日期:2017-01-06 修回日期:2017-02-16 出版日期:2017-05-21 发布日期:2017-05-21
  • 作者简介:张昌民(1963-),男,博士,博士生导师,主要从事沉积学与石油地质学方面的科研和教学工作。地址:(430100)湖北省武汉市蔡甸区大学路111号长江大学地球科学学院。Email:zcm@yangtzeu.edu.cn。
  • 基金资助:
    国家“十三五”重大科技专项“深层优势储层沉积成因机制及地质预测技术”(编号:2016ZX05027-002-007)资助

Concept of distributive fluvial system and its significance to oil and gas exploration and development

ZHANG Changmin1, HU Wei1, ZHU Rui1, WANG Xulong2, HOU Guowei3   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    3. Shanghai Branch of CNOOC Ltd., Shanghai 200030, China
  • Received:2017-01-06 Revised:2017-02-16 Online:2017-05-21 Published:2017-05-21

摘要: 主要介绍分支河流体系(DFS)的基本概念、特征及其研究意义。分支河流体系是在运用GoogleEarth对全球700余个现代沉积盆地中的冲积河流沉积体系进行统计的基础上提出的新术语,它主导了所有现代沉积盆地的沉积区,在挤压、拉张和走滑等背景条件下都有发育。分支河流体系具有6条判别标准,其表面的河道体系有6种类型,而分支河流体系自身有5种终端类型。分支河流体系的沉积模式可以显示出比单个河道相模式范围更大的河流沉积体系特征,对深入认识陆相含油气盆地的沉积体系及指导油气勘探等具有重要的意义。

Abstract: The basic concepts, characteristics and research significance of distributive fluvial system (DFS) were introduced. The new geological term, DFS, is advanced recently, by statistically analyzing the sedimentary systems of alluvial rivers in more than 700 continental basins using Google Earth, and it dominates all sedimentation and develops in all tectonic settings, including compressional, extensional and strike-slipping. Six criteria of discrimination of DFS, six planform types on DFS and five terminal types of DFS were recognized. The DFS sedimentary model can show the characteristics of fluvial depositional system in a larger range than the single channel facies model, which is of great significance to understand the sedimentary system of continental petroliferous basins and guide oil and gas exploration.

中图分类号: 

  • TE19
[1] WEISSMANN G S, HARTLEY A J, NICHOLS G J, et al. Fluvial form in modern continental sedimentary basins:distributive fluvial systems. Geology, 2010, 38(1):39-42.
[2] HARTLEY A J, WEISSMANN G S, NICHOLS G J, et al. Large distributive fluvial systems:characteristics, distribution, and controls on development. Journal of Sedimentary Research, 2010, 80(2):167-183.
[3] DREW F. Alluvial and lacustrine deposits and glacial records of the Upper-Indus Basin. Quarterly Journal of the Geological Society, 1873, 29(1/2):441-471.
[4] 李新坡, 莫多闻, 朱忠礼.祁连山、贺兰山与吕梁山山前冲积扇上的农地对比.地理研究, 2006, 25(6):985-993. LI X P, MO D W, ZHU Z L. Comparison between agricultural land on alluvial fans at Qilian Mountain, Helan Mountain and Lüliang Mountain regions. Geographical Research, 2006, 25(6):985-993.
[5] 李新坡, 莫多闻, 朱忠礼.侯马盆地冲积扇及其流域地貌发育规律.地理学报, 2006, 61(3):241-248. LI X P, MO D W, ZHU Z L. Developments of alluvial fans and their catchments in Houma Basin. Acta Geographica Sinica, 2006, 61(3):241-248.
[6] BATES R L, JACKSON J A. Dictionary of geological terms. New York:Anchor Press, 1976.
[7] JAMESON R, SWEET J M, WHITE G W. The Wernerian theory of the Neptunian origin of rocks. New York:Hafner Press, 1976.
[8] 刘宝珺.沉积岩石学.北京:地质出版社, 1980. LIU B J. Sedimentary petrology. Beijing:Geological Publishing House, 1980.
[9] 冯增昭.沉积岩石学.2版.北京:石油工业出版社, 1993. FENG Z Z. Sedimentary petrology. 2nd ed. Beijing:Petroleum Industry Press, 1993.
[10] GALLOWAY W E, HOBDAY D K. Terrigenous clastic depositional systems:applications to petroleum, coal, and uranium exploration. Springer, 1983.
[11] GALLOWAY W E, HOBDAY D K. Terrigenous clastic depositional systems:applications to fossil fuel and groundwater resources. 2nd ed. Springer, 1996.
[12] STANISTREET I G, MCCARTHY T S. The Okavango fan and the classification of subaerial fan systems. Sedimentary Geology, 1993, 85(1):115-133.
[13] BLAIR T C, MCPHERSON J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal of Sedimentary Research, 1994, 64(3a):450-489.
[14] NORTH C P, NANSON G C, FAGAN S D. Recognition of the sedimentary architecture of dryland anabranching(anastomosing) rivers. Journal of Sedimentary Research, 2007, 77(12):925-938.
[15] LEIER A L, DECELLES P G, PELLETIER J D. Mountains, monsoons, and megafans. Geology, 2005, 33(4):289-292.
[16] GIBLING M R, TANDON S K, SINHA R, et al. Discontinuitybounded alluvial sequences of the southern Gangetic Plains, India:aggradation and degradation in response to monsoonal strength. Journal of Sedimentary Research, 2005, 75(3):369-385.
[17] NICHOLS G J, FISHER J A. Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 2007, 195(1):75-90.
[18] FISHER J A, NICHOLS G J, WALTHAM D A. Unconfined flow deposits in distal sectors of fluvial distributary systems:examples from the Miocene Luna and Huesca Systems, northern Spain. Sedimentary Geology, 2007, 195(1):55-73.
[19] TRENDELL A M, ATCHLEY S C, NORDT L C. Facies analysis of aprobable large-fluvial-fan depositional system:the Upper Triassic Chinle Formation at Petrified Forest National Park, Arizona, U.S.A. Journal of Sedimentary Research, 2013, 83(10):873-895.
[20] FONTANA A, MOZZI P, MARCHETTI M. Alluvial fans and megafans along the southern side of the Alps. Sedimentary Geology, 2014, 301:150-171.
[21] MUKERJI A B. Geomorphic patterns and processes in the terminal tract of inland streams in Sutlej-Yamuna plain. Journal of the Geological Society of India, 1975, 16(4):450-459.
[22] MUKERJI A B. Terminal fans of inland streams in Sutlej-Yamuna plain, India. Geomorphology, 1976, 20:190-204.
[23] FRIEND P F. Distinctive features of some ancient river systems. Dallas Geological Society Memoir 5, 1977:531-542.
[24] PARKASH B, AWASTHI A K, GOHAIN K. Lithofacies of the Markandaterminal fan,Kurukshetra district,Haryana,India//COLLINSON J D, LEWIN J. Modern and ancient fluvial systems. Oxford, UK:Blackwell Publishing Ltd., 1983:337-344.
[25] KELLY S B, OLSEN H. Terminal fans-a review with reference to Devonian examples. Sedimentary Geology, 1993, 85(1/2/3/4):339-374.
[26] 张金亮, 俞惠隆.我国东部几个含油气盆地浅水湖泊砂体成因的认识.石油与天然气地质, 1989, 10(1):40-44. ZHANG J L, YU H L. Knowledge on genesis of shallow lacustrine sandbodies from hydrocarbon-bearing basins in east China. Oil & Gas Geology, 1989, 10(1):40-44.
[27] CAIN S A, MOUNTNEY N P. Spatial and temporal evolution of a terminal fluvial fan system:the Permian Organ Rock Formation, South-east Utah, USA. Sedimentology, 2009, 56(6):1774-1800.
[28] FIELDING C R, ASHWORTH P J, BEST J L, et al. Tributary, distributary and other fluvial patterns:what really represents the norm in the continental rock record? Sedimentary Geology, 2012, 261:15-32.
[29] WEISSMANN G S, HARTLEY A J, NICHOLS G J, et al. Alluvial facies distributions in continental sedimentary basins-distributive fluvial systems. SEPM Society for Sedimentary Geology, 2011:327-355.
[30] WEISSMANN G S, HARTLEY A J, SCUDERI L A, et al. Prograding distributive fluvial systems:Geomorphic models and ancient examples. Society for Sedimentary Geology Special Publication, 2013(104):131-147.
[31] WEISSMANN G S, HARTLEY A J, SCUDERI L A, et al. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record:a review. Geomorphology, 2015, 250:187-219.
[32] HARTLEY A J, WEISSMANN G S, SCUDERI L. Controls on the apex location of large deltas. Journal of the Geological Society, 2016, 174:10-13.
[33] HARTLEY A J, WEISSMANN G S, SCUDERI L A, et al. Soil development on modern distributive fluvial systems:preliminary observations with implications for interpretation of paleosols in the rock record. Society for Sedimentary Geology Special Publication, 2013(104):149-158.
[34] DAVIDSON S K, HARTLEY A J, WEISSMANN G S, et al. Geomorphic elements on modern distributive fluvial systems. Geomorphology, 2013, 180:82-95.
[35] DAVIDSON S K, HARTLEY A J. A quantitative approach to linking drainage area and distributive-fluvial-system area in modern and ancient Endorheic Basins. Journal of Sedimentary Research, 2014, 84(11):1005-1020.
[36] QUARTERO E M, LEIER A L, BENTLEY L R, et al. Basinscale stratigraphic architecture and potential Paleocene distributive fluvial systems of the Cordilleran Foreland Basin, Alberta, Canada. Sedimentary Geology, 2015, 316:26-38.
[37] OWEN A, NICHOLS G J, HARTLEY A J, et al. Vertical trends within the prograding Salt Wash distributive fluvial system, SW USA. Basin Research, 2015:1-17.
[38] OWEN A, NICHOLS G J, HARTLEY A J, et al. Quantification of a distributive fluvial system:the salt wash DFS of the Morrison Formation, SW USA. Journal of Sedimentary Research, 2015, 85(5):544-561.
[39] OWEN A, HARTLEY A J, WEISSMANN G S, et al. Uranium distribution as a proxy for basin-scale fluid flow in distributive fluvial systems. Journal of the Geological Society, 2016, 173(4):s2016-s2017.
[40] MOUNTNEY N. Depositional environments and facies:moving towards quantitative predictive models. Xiangshan-Science Conference:International Workshop on the Future of Sedimentology in China. Beijing, 2016.
[41] 邓远, 陈世悦, 杨景林, 等.准噶尔盆地北部晚白垩世-古近纪沉积特征研究.岩性油气藏, 2015, 27(5):53-59. DENG Y, CHEN S Y, YANG J L, et al. Sedimentary characteristics of Late Cretaceous and Paleogene in northern Junggar Basin. Lithologic Reservoirs, 2015, 27(5):53-59.
[42] 李兴, 张立强, 施辉, 等.准噶尔盆地玛湖凹陷百口泉组沉积古环境分析-以玛18井为例.岩性油气藏, 2016, 28(2):80-85. LI X, ZHANG L Q, SHI H, et al. Sedimentary environment of Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin:a case study from Ma 18 well. Lithologic Reservoirs, 2016, 28(2):80-85.
[43] 邹妞妞, 张大权, 钱海涛, 等.准噶尔盆地玛北斜坡区扇三角洲砂砾岩储层主控因素.岩性油气藏, 2016, 28(4):24-33. ZOU N N, ZHANG D Q, QIAN H T, et al. Main controlling factors of glutenite reservoir of fan delta in Mabei slope, Junggar Basin. Lithologic Reservoirs, 2016, 28(4):24-33.
[44] 史兴民, 李有利, 杨景春.新疆玛纳斯湖变迁的气候和构造分析.地理科学, 2008, 28(2):266-271. SHI X M, LI Y L, YANG J C. Climatic and tectonic analysis of Manaslake changes. Scientia Geographica Sinica, 2008, 28(2):266-271.
[1] 张璐, 何峰, 陈晓智, 祝彦贺, 韩刚, 李祺鑫. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏, 2020, 32(2): 108-114.
[2] 刘腾, 王军, 张京思, 张藜, 蔡少武. 地震Wheeler域变换结合时频分析技术用于渤海油田岩性油气藏描述[J]. 岩性油气藏, 2018, 30(3): 124-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .