岩性油气藏 ›› 2018, Vol. 30 ›› Issue (3): 124–132.doi: 10.12108/yxyqc.20180314

• 技术方法 • 上一篇    下一篇

地震Wheeler域变换结合时频分析技术用于渤海油田岩性油气藏描述

刘腾, 王军, 张京思, 张藜, 蔡少武   

  1. 中海石油(中国)有限公司天津分公司 渤海石油研究院, 天津 300459
  • 收稿日期:2017-11-02 修回日期:2018-01-13 出版日期:2018-05-21 发布日期:2018-05-21
  • 作者简介:刘腾(1987-),男,硕士,工程师,主要从事地震资料解释与储层描述等方面的研究工作。地址:(300459)天津市塘沽区海洋高新技术开发区海川路2121号渤海石油管理局大厦B座。Email:liuteng@cnooc.com.cn。
  • 基金资助:
    “十二五”国家科技重大专项“渤海海域大中型油气田地质特征”(编号:2011ZX05023-006-002)资助

Application of Wheeler transform combined with time-frequency analysis technology to lithologic reservoir characterization of Bohai Oilfield

LIU Teng, WANG Jun, ZHANG Jingsi, ZHANG Li, CAI Shaowu   

  1. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China
  • Received:2017-11-02 Revised:2018-01-13 Online:2018-05-21 Published:2018-05-21

摘要: 为研究渤海油田石臼坨凸起缓坡带A区块岩性油气藏的成藏模式、预测勘探有利区带,亟须精细刻画层序格架下沉积体系的分布形态、分析储层顶底板油气保存条件及上倾封堵条件等。首先利用时频分析技术精细划分井上体系域,再采用基于地震数据驱动的Wheeler域变换技术将井上划分结果向三维空间进行推广,快速建立精细体系域格架,进行储层预测及保存条件分析。结果表明:石臼坨凸起缓坡带紧邻秦南富烃凹陷的主洼,汇烃条件优越;区内控洼长期活动断裂与三角洲砂体共同组成复式输导网络,利于岩性油气藏成藏;缓坡带上的鼻状构造是油气运移的重要方向和轨迹,一旦上倾方向具有封堵条件即可形成油气藏。整体而言,渤海油田石臼坨凸起缓坡带A区块的保存条件及封堵条件良好,是岩性油气藏勘探的有利区带。

关键词: 岩石, 岩心, 压汞, 压汞曲线, 毛管压力, 恒速压汞, 孔隙, 孔喉比

Abstract: In order to study the reservoir accumulation model of lithologic reservoirs and find favorable exploration zones in block A in the gentle slope zone of Shijiutuo uplift,we need to characterize the distribution of sedimentary systems and analyze the preservation conditions and updip sealing conditions of oil and gas in the reservoir top and bottom plate. This paper firstly used time-frequency analysis technology to divide the 2D sedimentary systems of wells,and then used the Wheeler transform based on seismic data to promote the results of wells to the 3D space,to promote the rapid establishment of fine sedimentary systems framework, and carried out reservoir prediction and preservation condition analysis. The results show that: (1)adjacent to Qinnan hydrocarbonrich generation depression,the gentle slope zone in Shijiutuo uplift has good conditions for hydrocarbon collection; (2)the long-term active fault in the study area together with sand bodies in delta formed a double-type transport network,which is beneficial for the formation of lithologic reservoirs; (3)the nose-shaped structure in the gentle slope zone is an important direction and track of hydrocarbon migration,once the area in the updip direction has good sealing conditions,it can form oil and gas reservoirs. Overall, block A has favorable preservation and sealing conditions, so it is a favorable exploration zone of lithologic reservoirs.

Key words: rock, core, mercury injection, mercury injection curve, capillary pressure, constant-speed mercury injection, pore, pore-throat ratio

中图分类号: 

  • TE19
[1] 姜文亚, 柳飒. 层序地层格架中优质烃源岩分布与控制因素——以歧口凹陷古近系为例. 中国石油勘探, 2015, 20(3):51-58. JIANG W Y, LIU S. Distribution and controlling factors of high-quality hydrocarbon source rock in sequential stratigraphic framework-Taking Paleogene system in Qikou Depression for instance. China Petroleum Exploration, 2015, 20(3):51-58.
[2] 唐武, 王英民, 仲米虹.隆后坳陷区三角洲沉积特征及演化模式——以桑塔木地区为例.岩性油气藏, 2016, 28(3):34-41. TANG W, WANG Y M, ZHONG M H. Sedimentary characteristics and evolution model of delta in backbulge zone:a case study in Sangtamu area. Lithologic Reservoirs, 2016, 28(3):34-41.
[3] 徐长贵, 许效松, 丘东洲, 等. 辽东湾地区辽西凹陷中南部古近系构造格架与层序地层格架及古地理分析. 古地理学报, 2007, 7(4):449-459. XU C G, XU X S, QIU D Z, et al. Structural and sequence stratigraphic frameworks and palaeogeography of the Paleogene in central-southern Liaoxi Sag, Liaodongwan Bay area. Journal of Palaeogeography, 2007, 7(4):449-459.
[4] 方勇, 邓宏文, 郝雪峰, 等. 东营三角洲高频旋回划分与浊积砂体预测. 物探与化探, 2004, 28(6):504-508. FANG Y, DENG H W, HAO X F, et al. High resolution sequence division of Dongying delta and prediction of turbidite sand dodies. Geophysical and Geochemical Exploration, 2004, 28(6):504-508.
[5] 陈锋, 朱筱敏, 葛家旺, 等.珠江口盆地陆丰南地区文昌组层序地层及沉积体系研究.岩性油气藏, 2016, 28(4):67-77. CHEN F, ZHU X M, GE J W, et al. Sequence stratigraphy and depositional systems of Wenchang Formation in the southern Lufeng area, Pearl River Mouth Basin. Lithologic Reservoirs, 2016, 28(4):67-77.
[6] 王晨杰, 黄晓波, 郭涛.高精度古地貌恢复技术及应用——以辽西凸起南段东营组二段下段为例.现代地质, 2017, 31(6):1214-1221. WANG C J, HUANG X B, GUO T. High precision paleotopography restoration technology and its application:Taking the second member of Dongying strata in the south of Liaoxi Uplift as an example. Geoscience, 2017, 31(6):1214-1221.
[7] 刘喜武, 张宁, 勾永峰, 等. 地震勘探信号时频分析方法对比与应用分析. 地球物理学进展, 2008, 23(3):743-753. LIU X W, ZHANG N, GOU Y F, et al. The comparison and application of time-frequency analysis methods to seismic signal. Progress in Geophysics, 2008, 23(3):743-753.
[8] 董建华, 顾汉明, 张星.几种时频分析方法的比较及应用.工程地球物理学报, 2007, 4(4):312-316. DONG J H, GU H M, ZHANG X. A comparison of timefrequency analysis methods and their applications. Chinese Journal of Engineering Geophysics, 2007, 4(4):312-316.
[9] 王建强, 陈建文, 梁杰, 等. 频谱分解技术在南黄海崂山隆起的应用. 海洋地质前沿, 2016, 32(10):38-43. WANG J Q, CHEN J W, LIANG J, et al. Application of spectrum decomposition to the laoshan uplift, south yellow sea. Marine Geology Frontiers, 2016, 32(10):38-43.
[10] LOMASK J. Flattening 3 D seisimic cubes without picking. The 73 rd Annual International Meeting, SEG Expanded Abstracts, 2003:1402-1405.
[11] DE GROOT P, DE BRUIN G, HEMSTRA N. How to create and use 3 D Wheeler transformed seismic volumes. The 76 th Annual International Meeting, SEG Expanded Abstracts, 2006:2592-2596.
[12] DE BRUIN G, BOUANGA EC. Time attributes of stratigraphic surfaces, analyzed in the structural and wheeler transformed domain. Extended abstracts of the 69 th EAEG Meeting, 2007:E04522.
[13] 谭绍泉. Wheeler域储层地震预测技术研究. 地球物理学进展, 2013, 28(2):846-851. TAN S Q. Seismical reservoir prediction in Wheeler domain. Progress in Geophysics, 2013, 28(2):846-851.
[14] 董艳蕾, 朱筱敏, 李德江, 等. 渤海湾盆地辽东湾地区古近系地震相研究.沉积学报, 2007, 25(4):554-563. DONG Y L, ZHU X M, LI D J, et al. Seismic facies of Paleogene in Liaodong Bay, Bohai Basin. Acta Sedimentologica Sinica, 2007, 25(4):554-563.
[15] 陈骥, 徐凤强, 刘超, 等.蠡县斜坡沙三上亚段与沙一亚段沉积特征及有利储层分布.岩性油气藏, 2016, 28(5):91-98. CHEN J, XU F Q, LIU C, et al. Sedimentary characteristics and favorable reservoir distribution of the upper submember of the third member and the first member of Shahejie Formation in Lixian Slope. Lithologic Reservoirs, 2016, 28(5):91-98.
[16] MALLAT S G, ZHANG Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.
[17] 刘喜武, 宁俊瑞. 地震时频属性及其在油气地震地质技术中应用的综述. 勘探地球物理进展, 2009, 32(1):18-22. LIU X W, NING J R. A review of time-frequency attributes and their applications in seismic data interpretation for oil & gas geology. Progress in Exploration Geophysics, 2009, 32(1):18-22.
[18] 陈雨红, 杨长春, 曹齐放, 等. 几种时频分析方法比较. 地球物理学进展, 2006, 21(4):1180-1185. CHEN Y H, YANG C C, CAO Q F, et al. The comparison of some time-frequency analysis methods. Progress in Geophysics, 2006, 21(4):1180-1185.
[19] 刘传虎, 刘福贵, 李卫忠. 时频分析方法及在储层预测中的应用. 石油地球物理勘探, 1996, 31(1):11-20. LIU C H, LIU F G, LI W Z. Time frequency analysis method and its application in reservoir prediction. Oil Geophysical Prospecting, 1996, 31(1):11-20.
[20] 罗红梅, 邢雷, 穆星. 利用三维Wheeler图形进行地质过程控制下的地震解释方法. 国外油田工程, 2009, 25(4):1-2. LUO H M, XING L, MU X. Seismic interpretation method under Geological process control using 3 D Wheeler graphics. Foreign Oilfield Engineering, 2009, 25(4):1-2.
[21] 刘洪文, 杨培杰, 刘书会, 等. 地震Wheeler变换技术及其应用. 石油物探, 2012, 51(1):1180-1185. LIU H W, YANG P J, LIU S H, et al. Seismic Wheeler transform and its application. Geophysical Prospecting for Petroleum, 2012, 51(1):1180-1185.
[22] NORDLUND U, GRIFFITHS C M. Automatic construction of two-and three-dimensional chronostratigraphic sections from digitized seismic data. Computers and Geosciences, 1993, 19(8):1185-1205.
[23] 张京思, 揣媛媛, 边立恩.正演模拟技术在渤海油田X井区砂体连通性研究中的应用.岩性油气藏, 2016, 28(3):127-132. ZHANG J S, CHUAI Y Y, BIAN L E. Application of forward modeling to study of sand body connectivity in X well field of Bohai Oilfield. Lithologic Reservoirs, 2016, 28(3):127-132.
[1] 张文凯, 施泽进, 田亚铭, 王勇, 胡修权, 李文杰. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏, 2021, 33(4): 10-19.
[2] 何绪全, 黄东, 赵艾琳, 李育聪. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏, 2021, 33(3): 129-137.
[3] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[4] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[5] 王立辉, 夏惠芬, 韩培慧, 曹瑞波, 孙先达, 张思琪. 剩余油分布的微观特征及其可动用程度的定量表征[J]. 岩性油气藏, 2021, 33(2): 147-154.
[6] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[7] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[8] 张艳, 高世臣, 孟婉莹, 成育红, 蒋思思. 致密砂岩储层AVO正演模拟过程中的不确定性分析[J]. 岩性油气藏, 2020, 32(6): 120-128.
[9] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[10] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[11] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
[12] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[13] 雷海艳, 樊顺, 鲜本忠, 孟颖, 杨红霞, 晏奇, 齐婧. 玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制[J]. 岩性油气藏, 2020, 32(5): 102-112.
[14] 郭娟, 赵迪斐, 梁孝柏, 杨坤, 李昊轩, 龙代玺. 页岩纳米孔隙的结构量化表征——以川东南地区五峰组为例[J]. 岩性油气藏, 2020, 32(5): 113-121.
[15] 戚涛, 胡勇, 李骞, 赵梓寒, 张春, 李滔. 考虑弥散的混溶驱替模拟[J]. 岩性油气藏, 2020, 32(5): 161-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .