岩性油气藏 ›› 2024, Vol. 36 ›› Issue (3): 31–39.doi: 10.12108/yxyqc.20240303

• 地质勘探 • 上一篇    下一篇

川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素

程静1,2, 闫建平1,2, 宋东江3, 廖茂杰4, 郭伟5, 丁明海6, 罗光东6, 刘延梅7   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 油气藏地质及开发工程全国重点实验室·西南石油大学, 成都 610500;
    3. 山东瑞霖能源技术有限公司, 山东 东营 257000;
    4. 中国石油西南油气田公司, 页岩气研究院, 成都 610500;
    5. 中国石油勘探开发研究院, 北京 100083;
    6. 中国石油大庆油田公司 钻探工程公司, 黑龙江 大庆 163712;
    7. 斯伦贝谢科技服务(成都)有限公司, 成都 610095
  • 收稿日期:2023-04-29 修回日期:2023-06-24 出版日期:2024-05-01 发布日期:2024-04-30
  • 第一作者:程静(1998—),女,西南石油大学在读硕士研究生,研究方向为数字岩石物理、测井地质学、页岩气测井评价及应用。地址:(610500)四川省成都市新都区西南石油大学地球科学与技术学院。Email:chengjing2706@163.com。
  • 通信作者: 闫建平(1980—),男,博士,教授,主要从事测井地质学及非常规油气测井评价方面的教学与研究工作。Email:yanjp_tj@163.com。
  • 基金资助:
    国家科自然科学基金项目“低电阻率页岩气储层:成因机制差异及含气饱和度模型研究”(编号:42372177)、四川省自然科学基金项目“页岩气储层低电阻率成因机制及对含气性的影响研究”(编号:2022NSFSC0287)联合资助。

Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin

CHENG Jing1,2, YAN Jianping1,2, SONG Dongjiang3, LIAO Maojie4, GUO Wei5, DING Minghai6, LUO Guangdong6, LIU Yanmei7   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University), Chengdu 610500, China;
    3. Shandong Ruilin Energy Technology Co., Ltd., Dongying 257000, Shandong, China;
    4. Research Institute of Shale Gas, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China;
    5. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    6. Drilling Engineering Company, PetroChina Daqing Oilfield Company, Daqing 163712, Heilongjiang, China;
    7. Schlumberger Technology Service(Chengdu) Co., Ltd., Chengdu 610095, China
  • Received:2023-04-29 Revised:2023-06-24 Online:2024-05-01 Published:2024-04-30

摘要: 以川南长宁地区 NX22 井五峰组—龙马溪组低电阻率页岩气储层为例,利用岩心矿物组分、扫描电镜、总有机碳(TOC)含量、含水饱和度测试及测井曲线等资料,确立了低电阻率页岩气储层岩石体积物理模型,采用随机法构建了三维数字岩心模型,进而利用有限元数值模拟方法模拟计算各矿物组分含量、含水饱和度及有机质石墨化的电阻率响应特征,并分析其主控因素。研究结果表明:①长宁地区五峰组—龙马溪组低电阻率页岩气储层岩石体积物理模型由骨架(石英、长石、方解石和白云石等)、黏土矿物、黄铁矿、未石墨化有机质以及石墨化有机质、孔隙 6 个部分组成。②三维数字岩心模型的长、宽、高分别为 100×100×100 像素,融入了上述物理模型中的 6 个部分,并采用不同的颜色对导电组分进行标识,可以显示不同方向上的切片,表征低电阻率页岩气储层的组分特性。③黏土矿物含量、黄铁矿含量、含水饱和度以及有机质石墨化程度等 4 个参数增大都会造成页岩气储层的电阻率下降,而有机质的高石墨化程度(25%)和高含水饱和度(88.0%)使页岩气储层的电阻率从正常电阻率(大于 15 Ω·m)降到低阻甚至超低阻(小于 5 Ω·m),是导致研究区页岩气储层超低阻响应的 2 个核心因素。

关键词: 低电阻率, 页岩气储层, 数字岩心, 有限元方法, 导电因素, 含水饱和度, 有机质石墨化程度, 黏土矿物, 黄铁矿含量, 奥陶系五峰组—志留系龙马溪组, 川南长宁地区

Abstract: Taking low resistivity shale gas reservoirs of Wufeng Formation-Longmaxi Formation of well NX22 in Changning area in southern Sichuan Basin as an example, the data of core mineral composition, scanning electron microscope, total organic carbon(TOC)content, water saturation test and logging curves were used to establish a rock volume physical model of low resistivity shale gas reservoirs. A three-dimensional digital core model was constructed by random method, and the resistivity response characteristics were simulated under different mineral components content, water saturation and organic matter graphitization by finite element numerical simulation method, and the main controlling factors were analyzed. The results show that:(1)The rock volume physical model of low resistivity shale gas reservoirs of Wufeng Formation-Longmaxi Formation in Chang-ning area consists of six parts:skeleton(quartz, feldspar, calcite and dolomite), clay minerals, pyrite, ungraphitized organic matter, graphitized organic matter and pores.(2)The 3D digital core is of 100×100×100 pixels in length, width, and height, respectively. It integrates the six parts of the physical model mentioned above, and uses different colors to identify the conductive components. It can display slices in different directions to characterize the composition characteristics of low resistivity shale gas reservoirs.(3)An increase in clay mineral content, pyrite content, water saturation and organic matter graphitization degree can cause a decrease in the resistivity of shale gas reservoirs. However, the high degree of organic matter graphitization(25%)and high water saturation (88.0%)cause the resistivity of shale gas reservoirs to decrease from normal resistivity(greater than 15 Ω·m)to low or even ultra-low resistivity(less than 5 Ω·m), which are the two core factors leading to the ultra-low resistivity response of shale gas reservoirs in the study area.

Key words: low resistivity, shale gas reservoir, digital core, finite element method, conductive factor, water saturation, organic matter graphitization degree, clay minerals, pyrite content, Ordovician Wufeng FormationSilurian Longmaxi Formation, Changning area in Sichaun Basin

中图分类号: 

  • TE348
[1] 蒋珊,王玉满,王书彦,等. 四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J]. 天然气工业, 2018,38(10):19-27. JIANG Shan,WANG Yuman,WANG Shuyan,et al. Distribution prediction of graphitized organic matter areas in the Lower Cambrian Qiongzhusi shale in the central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J]. Natural Gas Industry,2018,38(10):19-27.
[2] 范增辉. 威远地区下志留统龙马溪组页岩气富集条件研究[D]. 成都:成都理工大学,2019. FAN Zenghui. Study on shale gas enrichment condition of Lower Silurian Longmaxi Formation in Weiyuan area of Sichuan Basin[D]. Chengdu:Chengdu University of Technology,2019.
[3] 魏富彬,刘珠江,陈斐然,等. 川东南地区龙马溪组页岩"低电阻、低含气"成因及地质意义[J]. 石油实验地质,2023,45(6):1089-1096. WEI Fubin,LIU Zhujiang,CHEN Feiran,et al. Discussion on genesis and geological significance of"low resistivity and low gas content"of Longmaxi Formation shale in southeastern Sichuan[J]. Petroleum Geology & Experiment,2023,45(6):1089-1096.
[4] 王鑫. 川南地区海相低阻页岩发育影响因素及含气性评价[D]. 北京:中国石油大学(北京),2020. WANG Xin. Low-resistivity origin and evaluation of gas-bearing properties of marine shale in southern Sichuan Basin[D]. Beijing:China University of Petroleum(Beijing),2020.
[5] 王玉满,董大忠,程相志,等. 海相页岩有机质碳化的电性证据及其地质意义:以四川盆地南部地区下寒武统筇竹寺组页岩为例[J]. 天然气工业,2014,34(8):1-7. WANG Yuman,DONG Dazhong,CHENG Xiangzhi,et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance:A case of the Lower Cambrian Qiongzhusi Shale in southern Sichuan Basin[J]. Natural Gas Industry,2014,34(8):1-7.
[6] 赵文韬,荆铁亚,熊鑫,等. 海相页岩有机质石墨化特征研究:以渝东南地区牛蹄塘组为例[J]. 地质科技情报,2018,37(2):183-191. ZHAO Wentao,JING Tieya,XIONG Xin,et al. Graphitization characteristics of organic matters in marine-facies shales[J]. Geological Science and Technology Information,2018,37(2):183-191.
[7] 张琴,赵群,罗超,等. 有机质石墨化及其对页岩气储层的影响:以四川盆地南部海相页岩为例[J]. 天然气工业,2022,42(10):25-36. ZHANG Qin,ZHAO Qun,LUO Chao,et al. Effect of graphitization of organic matter on shale gas reservoirs:Take the marine shales in the southern Sichuan Basin as examples[J]. Natural Gas Industry,2022,42(10):25-36.
[8] 王滢,何嘉,寇一龙,等. 长宁地区龙马溪组页岩储层低电阻率成因[J]. 油气地质与采收率,2022,29(3):53-61. WANG Ying,HE Jia,KOU Yilong,et al. Causes of low resistivity of Longmaxi Formation shale reservoirs in Changningarea[J]. Petroleum Geology and Recovery Efficiency,2022,29(3):53-61.
[9] 杨小兵,张树东,张志刚,等. 低阻页岩气储层的测井解释评价[J]. 成都理工大学学报(自然科学版),2015,42(6):692-699. YANG Xiaobing,ZHANG Shudong,ZHANG Zhigang,et al. Logging interpretation and evaluation of low resistivity shale gas reservoirs[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2015,42(6):692-699.
[10] 高和群,丁安徐,蔡潇,等. 中上扬子海相页岩电阻率异常成因分析[J]. 断块油气田,2016,23(5):578-582. GAO Hequn,DING Anxu,CAI Xiao,et al. Genetic analysis of abnormal resistivity of Middle-Upper Yangtze marine shales[J]. Fault-Block Oil & Gas Field,2016,23(5):578-582.
[11] 谢小国,罗兵,尹亮先,等. 低阻页岩气储层影响因素分析[J]. 四川地质学报,2017,37(3):433-437. XIE Xiaoguo,LUO Bing,YIN Liangxian,et al. Influence factors of low resistivity shale gas reservoir[J]. Acta Geologica Sichuan,2017,37(3):433-437.
[12] 孙建孟,熊铸,罗红,等. 扬子地区下古生界页岩气储层低阻成因分析及测井评价[J]. 中国石油大学学报(自然科学版), 2018,42(5):47-56. SUN Jianmeng,XIONG Zhu,LUO Hong,et al. Mechanism analysis and logging evaluation of low resistivity in Lower Paleozoic shale gas reservoirs of Yangtze region[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018,42(5):47-56.
[13] 崔瑞康,孙建孟,刘行军,等. 低阻页岩电阻率主控因素研究[J]. 物探与化探,2022,46(1):150-159. CUI Ruikang,SUN Jianmeng,LIU Xingjun,et al. Major controlling factors of low-resistance shale gas reservoirs[J]. Geophysical and Geochemical Exploration,2022,46(1):150-159.
[14] 张少龙,闫建平,石学文,等. 深层页岩气甜点分类的地质-工程评价指标体系及应用:以四川盆地LZ地区五峰组-龙马溪组为例[J]. 中南大学学报(自然科学版),2022,53(9):3666-3680. ZHANG Shaolong,YAN Jianping,SHI Xuewen,et al. Geological and engineering evaluation index system for deep shalegas sweet spots classification and its application:A case of WufengLongmaxi formations in LZ area,Sichuan Basin[J]. Journal of Central South University(Science and Technology),2022,53(9):3666-3680.
[15] 丛平,闫建平,井翠,等. 页岩气储层可压裂性级别测井评价及展布特征:以川南X地区五峰组-龙马溪组为例[J]. 岩性油气藏,2021,33(3):177-188. CONG Ping,YAN Jianping,JING Cui,et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir:A case study from Wufeng Formation and Longmaxi Formation in X area,southern Sichuan Basin[J]. Lithologic Reservoirs,2021,33(3):177-188.
[16] 谭茂金. 数字岩石物理学及测井解释应用概论[J]. 测井技术,2022,46(4):371-379. TAN Maojin. Digital rock physics and its progress in log interpretation[J]. Well Logging Technology,2022,46(4):371-379.
[17] 张丽,孙建孟,孙志强. 数字岩心建模方法应用[J]. 西安石油大学学报(自然科学版),2012,27(3):35-40. ZHANG Li,SUN Jianmeng,SUN Zhiqiang. Research in digital core modeling methods[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2012,27(3):35-40.
[18] 孔强夫,周灿灿,李潮流,等. 数字岩心电性数值模拟方法及其发展方向[J]. 中国石油勘探,2015,20(1):69-77. KONG Qiangfu,ZHOU Cancan,LI Chaoliu,et al. Numerical simulation method of digital core electrical property and its development orientations[J]. China Petroleum Exploration,2015, 20(1):69-77.
[19] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653. ZOU Caineng,DONG Dazhong,WANG Shejiao,et al. Geological characteristics,formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development,2010,37(6):641-653.
[20] 蔡苏阳,肖七林,朱卫平,等. 川南地区五峰组-龙马溪组页岩储层纳米孔隙发育特征及其控制因素:以四川盆地南部长宁双河剖面为例[J]. 石油实验地质,2020,42(6):920-927. CAI Suyang,XIAO Qilin,ZHU Weiping,et al. Characteristics and controlling factors of nano pores in shale reservoirs of Wufeng-Longmaxi formations in southern Sichuan Basin:Insights from Shuanghe outcrop in Changning area[J]. Petroleum Geology & Experiment,2020,42(6):920-927.
[21] NIE Haikuan,HE Zhiliang,LIU Guangxiang,et al. Genetic mechanism of high-quality shale gas reservoirs in the WufengLongmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry B,2021,8(1):24-34.
[22] NIE Haikuan,CHEN Qian,ZHANG Guangrong,et al. An overview of the characteristic of typical Wufeng-Longmaxi shale gas fields in the Sichuan Basin,China[J]. Natural Gas Industry B,2021,8(3):217-230.
[23] 邹晓艳,李贤庆,王元,等. 川南地区五峰组-龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学,2022,33(4):654-665. ZOU Xiaoyan,LI Xianqing,WANG Yuan,et al. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin[J]. Natural Gas Geoscience,2022,33(4):654-665.
[24] 邹辰,吴永辉,章超,等. 渝西地区龙马溪组页岩低阻主控因素及有利区预测[J]. 东北石油大学学报,2023,47(2):81-90. ZOU Chen,WU Yonghui,ZHANG Chao,et al. Main controlling factors of the low resistivity Longmaxi Formation shale and prediction of favorable area in Yuxi area[J]. Journal of Northeast Petroleum University,2023,47(2):81-90.
[25] 赖富强,李仕超,王敏,等. 济阳坳陷页岩油储层矿物组分最优化反演方法[J]. 特种油气藏,2022,29(2):16-23. LAI Fuqiang,LI Shichao,WANG Min,et al. Optimal retrieval method for mineral constituents of shale oil reservoirs in Jiyang Sag[J]. Special Oil & Gas Reservoirs,2022,29(2):16-23.
[26] 刘学锋,张伟伟,孙建孟. 三维数字岩心建模方法综述[J]. 地球物理学进展,2013,28(6):3066-3072. LIU Xuefeng,ZHANG Weiwei,SUN Jianmeng,et al. Methods of constructing 3D digital cores:A review[J]. Progress in Geophysics,2013,28(6):3066-3072.
[27] 刘学锋. 基于数字岩心的岩石声电特性微观数值模拟研究[D]. 青岛:中国石油大学(华东),2010. LIU Xuefeng. Numerical simulation of elastic and electrical properties of rock based on digital cores[D]. Qingdao:China University of Petroleum(East China),2010.
[28] 聂昕. 页岩气储层岩石数字岩心建模及导电性数值模拟研究[D]. 北京:中国地质大学(北京),2014. NIE Xin. Digital core modeling and numerical study of electrical conductivity of shale gas reservoir rock[D]. Beijing:China University of Geosciences(Beijing),2014.
[29] 张强,李炎龙,徐平,等. 基于有限元法的数字岩心导电性数值模拟[J]. 地球物理学进展,2017,32(5):2148-2151. ZHANG Qiang,LI Yanlong,XU Ping,et al. Numerical simulation of electrical conductivity in digital cores based on finite element method[J]. Progress in Geophysics,2017,32(5):2148-2151.
[30] 聂昕,李秉科,张杰,等. 基于数字岩心的裂缝性碳酸盐岩储层电性数值模拟[J]. 长江大学学报(自然科学版),2022,19(6):20-29. NIE Xin,LI Bingke,ZHANG Jie,et al. Numerical simulation of electrical properties of fractured carbonate reservoirs based on digital cores[J]. Journal of Yangtze University(Natural Science Edition),2022,19(6):20-29.
[31] 刘宇虹. 长宁页岩气水平井排采工艺技术研究[D]. 成都:西南石油大学,2019. LIU Yuhong. Study on drainage and production technology of Changning shale horizontal wells[D]. Chengdu:Southwest Petroleum University,2019.
[32] 王秀平,牟传龙,葛祥英,等. 四川盆地南部及其周缘龙马溪组黏土矿物研究[J]. 天然气地球科学,2014,25(11):1781-1794. WANG Xiuping,MOU Chuanlong,GE Xiangying,et al. Study on clay minerals in the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its periphery[J]. Natural Gas Geoscience,2014,25(11):1781-1794.
[33] 范雨霏,潘保芝,郭宇航,等. 利用数字岩心技术评价含黏土砂岩导电模型[J]. 吉林大学学报(地球科学版),2021,51(3):919-926. FAN Yufei,PAN Baozhi,GUO Yuhang,et al. Evaluate electrical conductivity models of clay-bearing sandstones by digital core technology[J]. Journal of Jilin University(Earth Science Edition),2021,51(3):919-926.
[34] 张馨艺. 长宁地区五峰组-龙马溪组页岩气地质特征研究[D]. 成都:西南石油大学,2018. ZHANG Xinyi. Study on geological characteristics of WufengLongmaxi shale gas in Changning area[D]. Chengdu:Southwest Petroleum University,2018.
[35] 程仁杰,孙建孟,刘建新,等. X凹陷A构造低阻气层成因机理分析[J]. 物探与化探,2022,46(6):1369-1380. CHENG Renjie,SUN Jianmeng,LIU Jianxin,et al. Genetic mechanisms of low-resistivity gas zones in structure A of sag X[J]. Geophysical and Geochemical Exploration,2022,46(6):1369-1380.
[36] 聂舟,衡德,邹源红,等. 四川盆地长宁地区海相页岩吸附气含量演化特征:以N201井五峰组-龙马溪组一段为例[J]. 海相油气地质,2021,26(1):43-50. NIE Zhou,HENG De,ZOU Yuanhong,et al. Evolution of adsorbed gas content of marine shale in Changning area,Sichuan Basin:A case of Wufeng Formation-Longmaxi member 1 in well N201[J]. Marine Origin Petroleum Geology,2021,26(1):43-50.
[37] 雍世和,张超谟. 测井数据处理与综合解释[M].东营:中国石油大学出版社,2002. YONG Shihe,ZHANG Chaomo. Logging data processing and comprehensive interpretation[M]. Dongying:China University of Petroleum Press,2002.
[38] 王立伟,李生杰,刘晓雪,等. 四川盆地五峰-龙马溪组低阻页岩含水饱和度测井评价[J]. 科学技术与工程,2022,22(16):6456-6462. WANG Liwei,LI Shengjie,LIU Xiaoxue,et al. Water saturation of low resistance shale in the Wufeng-Longmaxi Formation of Sichuan Basin logging evaluation[J]. Science Technology and Engineering,2022,22(16):6456-6462.
[39] 闫建平,蔡进功,赵铭海,等. 运用测井信息研究烃源岩进展及其资源评价意义[J]. 地球物理学进展,2009,24(1):270-279. YAN Jianping,CAI Jingong,ZHAO Minghai,et al. Advances in the study of source rock evaluation by geophysical logging and its significance in resource assessment[J]. Progress in Geophysics,2009,24(1):270-279.
[40] 薛子鑫,姜振学,郝绵柱,等. 川南深层页岩有机质石墨化对储层孔隙的控制作用[J]. 中南大学学报(自然科学版), 2022,53(9):3532-3544. XUE Zixin,JIANG Zhenxue,HAO Mianzhu,et al. Controlling effect of organic matter graphitization on reservoir pore structure in deep shale reservoirs,southern Sichuan[J]. Journal of Central South University(Science and Technology),2022,53(9):3532-3544.
[1] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[2] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[3] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[4] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[5] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[6] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[7] 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华, 向勇. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征[J]. 岩性油气藏, 2022, 34(4): 89-102.
[8] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[9] 许璟, 贺永红, 马芳侠, 杜彦军, 马浪, 葛云锦, 王瑞生, 郭睿, 段亮. 鄂尔多斯盆地定边油田主力油层有效储层厚度[J]. 岩性油气藏, 2021, 33(5): 107-119.
[10] 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131.
[11] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[12] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[13] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
[14] 任大忠, 周兆华, 梁睿翔, 周然, 柳娜, 南郡祥. 致密砂岩气藏黏土矿物特征及其对储层性质的影响——以鄂尔多斯盆地苏里格气田为例[J]. 岩性油气藏, 2019, 31(4): 42-53.
[15] 刘强, 余义常, 江同文, 徐怀民, 昌伦杰, 王超. 哈得逊油田东河砂岩储层水淹变化机理研究[J]. 岩性油气藏, 2017, 29(2): 150-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .