岩性油气藏 ›› 2019, Vol. 31 ›› Issue (4): 4253.doi: 10.12108/yxyqc.20190405
任大忠1,2, 周兆华3, 梁睿翔4, 周然5, 柳娜6,7, 南郡祥6,7
REN Dazhong1,2, ZHOU Zhaohua3, LIANG Ruixiang4, ZHOU Ran5, LIU Na6,7, NAN Junxiang6,7
摘要: 为了研究致密砂岩气藏的储层性质,以X射线衍射定量评价黏土矿物赋存特征为基础,结合铸体薄片、扫描电镜、高压压汞及核磁共振等资料,对鄂尔多斯盆地苏里格气田二叠系盒8段致密砂岩气藏15块黏土矿物样品进行了物性特征、孔隙结构及可动流体的影响因素等研究。结果表明:伊利石(体积分数为3.07%)及高岭石(体积分数为1.86%)是研究区主要的黏土矿物;黏土矿物本身发育丰富的微-纳米级孔隙,并贡献部分储集空间,同时也是论证次生溶蚀孔隙形成的间接证据;绿泥石主要起到晚期充填破坏孔隙的作用,伊利石及伊/蒙混层的大量出现会破坏储层性质;可动流体修正参数将孔隙表面亲水性考虑在内,突出了亲水性黏土与可动流体赋存特征的关系(R2>0.70)。该项研究提供了致密砂岩气藏黏土矿物与储层性质耦合关系的新视角,可为生产实践提供理论指导。
中图分类号:
[1] DESBOIS G,URAI J L,KUKLA P A,et al. High-resolution 3 D fabric and porosity model in a tight gas sandstone reservoir:a new approach to investigate microstructures from mm-to nm-scale combining argon beam cross-sectioning and SEM imaging. Journal of Petroleum Science & Engineering,2011,78(2):243-257. [2] 任大忠,张晖,周然,等.塔里木盆地克深地区巴什基奇克组致密砂岩储层敏感性研究.岩性油气藏,2018,30(6):27-36. REN D Z,ZHANG H,ZHOU R,et al. Sensitivity of tight sandstone reservoir of Bashijiqike Formation in Keshen area,Tarim Basin. Lithologic Reservoirs,2018,30(6):27-36. [3] XIAO D,LU Z,SHU J,et al. Comparison and integration of experimental methods to characterize the full-range pore features of tight gas sandstone:a case study in Songliao Basin of China. Journal of Natural Gas Science & Engineering,2016,34:14121421. [4] 任大忠,孙卫,屈雪峰,等.鄂尔多斯盆地延长组长6储层成岩作用特征及孔隙度致密演化. 中南大学学报(自然科学版),2016,47(8):2706-2714. REN D Z,SUN W,QU X F,et al. Characteristic of diagenesis and pore dense evolution of Chang 6 reservoir of Triassic Yanchang Formation,Ordos Basin. Journal of Central South University(Science and Technology),2016,47(8):2706-2714. [5] 任大忠,孙卫,黄海,等.鄂尔多斯盆地姬塬油田长6致密砂岩储层成因机理. 地球科学-中国地质大学学报,2016,41(10):1735-1744. REN D Z,SUN W,HUANG H,et al. Formation mechanism of Chang 6 tight sandstone reservoir in Jiyuan Oilfield,Ordos Basin. Earth Science-Journal of China University of Geosciences,2016,41(10):1735-1744. [6] WALDERHAUG O,ELIASSEN A,AASE N E. Prediction of permeability in quartz-rich sandstones:Examples from the Norwegian continental shelf and the Fontainebleau sandstone. Journal of Sedimentary Research,2012,82(12):899-912. [7] 肖佃师,卢双舫,姜微微,等.基于粒间孔贡献量的致密砂岩储层分类:以徐家围子断陷为例. 石油学报,2017,38(10):1123-1134. XIAO D S,LU S F,JIANG W W,et al. Classification of tight sandstone reservoirs based on the contribution of intergranular pores:a case study of Xujiaweizi fault depression. Acta Petrolei Sinica,2017,38(10):1123-1134. [8] STROKER T M,HARRIS N B,ELLIOTT W C,et al. Diagenesis of a tight gas sand reservoir:Upper Cretaceous Mesaverde Group, Piceance Basin,Colorado. Marine and Petroleum Geology, 2013,40:48-68. [9] KELLER L M,HOLZER L,SCHUETZ P,et al. Pore space relevant for gas permeability in Opalinus clay:Statistical analysis of homogeneity,percolation,and representative volume element. Journal of Geophysical Research:Solid Earth,2013,118(6):2799-2812. [10] SAKHAEE-POUR A,BRYANT,S L. Effect of pore structure on the producibility of tight-gas sandstones. AAPG Bulletin, 2014,98(4):663-694. [11] ZAPATA Y,SAKHAEE-POUR A. Modeling adsorption-desorption hysteresis in shales:Acyclic pore model. Fuel,2016, 181(10):557-565. [12] XIAO D,JIANG S,THUL D,et al. Impacts of clay on pore structure,storage and percolation of tight sandstones from the Songliao Basin,China:Implications for genetic classification of tight sandstone reservoirs. Fuel,2018,211(1),390-404. [13] ZHAO H,NING Z,WANG Q,et al. Petrophysical characterization of tight oil reservoirs using pressure-controlled porosimetry combined with rate-controlled porosimetry. Fuel,2015,154:233-242. [14] XIAO D,LU S,LU Z,et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones. Petroleum Exploration and Development,2016,43(6):1049-1059. [15] 王继平,李跃刚,王宏,等.苏里格西区苏X区块致密砂岩气藏地层水分布规律.成都理工大学学报(自然科学版),2013, 40(4):387-393. WANG J P,LI Y G,WANG H,et al. Study on formation water distribution law in tight sandstone gas reservoir of Su X block in west area of Sulige,Ordos Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 2013,40(4):387-393. [16] 沈玉林,郭英海,李壮福.鄂尔多斯盆地苏里格庙地区二叠系山西组及下石盒子组盒八段沉积相. 古地理学报,2006,8(1):53-62. SHEN Y L,GUO Y H,LI Z F. Sedimentary facies of the Shanxi Formation and member 8 of Xiashihezi Formation of Permian in Suligemiao area,Ordos Basin. Journal of Palaeogeography, 2006,8(1):53-62. [17] YANG R,FAN A,LOON A J V,et al. Depositional and diagenetic controls on sandstone reservoirs with low porosity and low permeability in the eastern Sulige Gas Field,China. Acta Geologica Sinica,2015,88(5):1513-1534. [18] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例. 石油学报, 2012,33(2):173-187. ZOU C N,ZHU R K,WU S T,et al. Types,characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations:Taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica,2012,33(2):173-187. [19] WASHBURN E W. The dynamics of capillary flow. Physical Review,1921,17(3):273-283. [20] PURCELL W R. Capillary pressures-their measurement using mercury and the calculation of permeability therefrom. Journal of Petroleum Technology,1949,1(2):39-48. [21] 国家能源局.ST/Y 5163-2010沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法.北京:石油工业出版社,2010. China National Energy Administration. ST/Y5163-2010 Analysis method for clay minerals and non-clay minerals in sedimentary rocks by the X-ray diffraction. Beijing:Petroleum Industry Press,2010. [22] 林西生,应凤祥,郑乃萱. X射线衍射分析技术及其地质应用.北京:石油工业出版社,1992. LIN X S,YING F X,ZHENG N X. X-ray diffraction analysis technology and its geological application. Beijing:Petroleum Industry Press,1992. [23] SONG Z Z,LIU G D,YANG W W,et al. Multi-fractal distribution analysis for pore structure characterization of tight sandstone:a case study of the Upper Paleozoic tight formations in the Longdong district,Ordos Basin. Marine and Petroleum Geology,2017, 92:842-854. [24] LAI J,WANG G. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques. Journal of Natural Gas Science and Engineering,2015,24:185-196. [25] DAIGLE H,JOHNSON A,THOMAS B. Determining fractal dimension from nuclear magnetic resonance data in rocks with internal magnetic field gradients. Geophysics,2014,79(6):D425D431. [26] DAIGLE H,THOMAS B,ROWE H,et al. Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough,integrated ocean drilling program expedition 333. Journal of Geophysical Research:Solid Earth,2014,119(4):2631-2650. [27] DAIGLE H,JOHNSON A. Combining mercury intrusion and nuclear magnetic resonance measurements using percolation theory. Transport in Porous Media,2016,111(3):669-679. [28] 张晓.致密砂岩储层核磁共振T2谱分析研究.石油化工应用, 2017,36(2):85-88. ZHANG X. The T 2 spectrum analysis of tight sandstone reservoir. Petrochemical Industry Application,2017,36(2):85-88. [29] LI P,SUN W,WU B,et al. Occurrence characteristics and influential factors of movable fluids in pores with different structures of Chang 63 reservoir,Huaqing Oilfield,Ordos Basin, China. Marine and Petroleum Geology,2016,97(11):480-492. [30] 史洪亮,杨克明,王同.川西坳陷须五段致密砂岩与泥页岩储层特征及控制因素.岩性油气藏,2017,29(4):38-46. SHI H L,YANG K M,WANG T. Characteristics and controlling factors of tight sandstone and shale reservoirs of the fifth member of Xujiahe Formation in the Western Sichuan Depression. Lithologic Reservoirs,2017,29(4):38-46. [31] 孟万斌,吕正祥,冯明石,等.致密砂岩自生伊利石的成因及其对相对优质储层发育的影响:以川西地区须四段储层为例.石油学报,2011,32(5):783-790. MENG W B,LYU Z X,FENG M S,et al. The origin of authigenic illite in tight sandstones and its effect on the formation of relatively high-quality reservoirs:a case study on sandstones in the 4 th member of Xujiahe Formation,western Sichuan Basin. Acta Petrolei Sinica,2011,32(5):783-790. [32] GILES M R,BOER R B D. Origin and significant of redistributional secondary porosity. Marine & Petroleum Geology,1990, 7(4):378-397. [33] BJØRLYKKE K. Open-system chemical behavior of Wilcox Group mudstones. How is large scale mass transfer at great burial depth in sedimentary basins possible? A discussion. Marine & Petroleum Geology,2011,28(7):1381-1382. [34] BJØRLYKKE K. Relationships between depositional environments,burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 2014,301(3):1-14. [35] THYBERG B,JAHREN J,WINJE T,et al. Quartz cementation in Late Cretaceous mudstones,northern North Sea:Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals.Marine and Petroleum Geology,2010, 27(8):1752-1764. [36] 任大忠,孙卫,赵继勇,等.鄂尔多斯盆地岩性油藏微观水驱油特征及影响因素:以华庆油田长81油藏为例.中国矿业大学学报,2015,44(6):1043-1052. REN D Z,SUN W,ZHAO J Y,et al. Microscopic waterflooding characteristics of lithologic reservoirs in Ordos basin and its influence factors:Taking the Chang 81 reservoir in Huaqing oilfield as an example. Journal of China University of Mining & Technology,2015,44(6):1043-1052. [37] LIU D,SUN W,LI D,et al. Pore structures characteristics and porosity evolution of tight sandstone reservoir:Taking the Chang 63 tight sandstones reservoir of Huaqing area in Ordos Basin as an instance. Fresenius Environmental Bulletin,2018, 27(2):1043-1052. [38] 任大忠,孙卫,魏虎,等.华庆油田长81储层成岩相类型及微观孔隙结构特征.现代地质,2014,28(2):379-387. REN D Z,SUN W,WEI H,et al. Types of sandstone reservoir diagenetic facies and microscopic pore structure characteristics of Chang 81 reservoir in Huaqing Oilfield. Geoscience,2014,28(2):379-387. [39] 周康,刘佳庆,段国英,等.吴起地区长61油层黏土矿物对油层低电阻率化的影响.岩性油气藏,2012,24(2):26-30. ZHOU K,LIU J Q,DUAN G Y,et al. Effect of clay minerals on low resistivity of Chang 61 reservoir in Wuqi area. Lithologic Reservoirs,2012,24(2):26-30. [40] 李海燕,岳大力,张秀娟.苏里格气田低渗透储层微观孔隙结构特征及其分类评价方法.地学前缘,2012,19(2):133-140. LI H Y,YUE D L,ZHANG X J. Characteristics of pore structure and reservoir evaluation of low permeability reservoir in Sulige Gas Field. Earth Science Frontiers,2012,19(2):133-140. [41] SAKHAEE-POUR A,BRYANT S L. Pore structure of shale. Fuel,2015,143:467-475. [42] 李闽,王浩,陈猛.致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例.岩性油气藏,2018,30(1):140-149. LI M,WANG H,CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:a case study of Lucaogou Formation in Jimsar Sag,NW China. Lithologic Reservoirs,2018,30(1):140-149. [43] 刘登科,孙卫,任大忠,等.致密砂岩气藏孔喉结构与可动流体赋存规律:以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例.天然气地球科学,2016,27(12):2136-2146. LIU D K,SUN W,REN D Z,et al. Features of pore-throat structures and movable fluid in tight gas reservoir:a case from the 8 th member of Permian Xiashihezi Formation and the 1 st member of Permian Shanxi Formation in the western area of Sulige Gasfield,Ordos Basin. Natural Gas Geoscience,2016, 27(12):2136-2146. |
[1] | 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88. |
[2] | 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121. |
[3] | 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159. |
[4] | 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144. |
[5] | 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155. |
[6] | 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166. |
[7] | 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177. |
[8] | 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43. |
[9] | 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84. |
[10] | 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108. |
[11] | 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158. |
[12] | 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171. |
[13] | 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71. |
[14] | 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83. |
[15] | 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39. |
|