岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 137–146.doi: 10.12108/yxyqc.20210415

• 勘探技术 • 上一篇    下一篇

页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例

向雪冰1,2, 司马立强1,2, 王亮2,3, 李军4, 郭宇豪1,2, 张浩1,2   

  1. 1. 西南石油大学 地球科学与技术学院, 成都, 610500;
    2. 油气藏地质及开发工程国家重点实验室, 成都 610500;
    3. 成都理工大学 能源学院, 成都 610059;
    4. 中国石化石油勘探开发研究院, 北京 100083
  • 收稿日期:2020-10-09 修回日期:2020-12-29 出版日期:2021-08-01 发布日期:2021-08-06
  • 第一作者:向雪冰(1996-),女,西南石油大学在读硕士研究生,研究方向为气测井方法、解释及地质应用。地址:(610500)四川省成都市新都区新都大道8号西南石油大学成都校区。Email:Xiangxuebing1996@163.com
  • 通信作者: 王亮(1986-),男,副教授,主要从事油气测井方法、解释及地质应用方面的教学与研究工作。Email:wangliang_swpu@163.com。
  • 基金资助:
    国家自然科学基金项目“页岩气储层微观孔隙结构连续定量表征与含气量评价”(编号:41504108)、国土资源部沉积盆地与油气资源重点实验室开放性基金项目“页岩气储层含气量评价”(编号:Zdsys2015003)、四川省教育厅自然科学类基金项目“页岩气储层微观孔隙结构实验表征及连续定量评价方法”(编号:15ZB0057)和中国博士后科学基金面上资助“多因素耦合作用下的致密油储层孔隙结构与含油性评价”(编号:2015M582568)联合资助

Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin

XIANG Xuebing1,2, SIMA Liqiang1,2, WANG Liang2,3, LI Jun4, GUO Yuhao1,2, ZHANG Hao1,2   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610500, China;
    3. School of Energy, Chengdu University of Technology, Chengdu 610059, China;
    4. Research Institute of Exploration Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
  • Received:2020-10-09 Revised:2020-12-29 Online:2021-08-01 Published:2021-08-06

摘要: 页岩气储层孔隙结构复杂,孔隙内富存的流体类型多样,按孔隙中流体的流动性,常将孔隙流体划分为可动水、毛管束缚水及黏土束缚水。为明确页岩气储层的孔隙流体的赋存及运移规律,选取四川盆地龙潭组7块含不同有机质及矿物组分的页岩样品,采用低场核磁共振的手段,测量了页岩气储层在变离心力与不同温度烘干状态下的低场核磁共振响应,分析页岩气储层岩心在不同离心力条件下离心以及在烘干过程中孔隙流体的赋存状态,以此对页岩孔隙流体类型进行划分;确定并划分出页岩储层的可动水、毛管束缚水和黏土束缚水的核磁共振T2截止值。实验结果表明,可动水与毛管束缚水的核磁共振T2截止值(T2 c1)分布在0.55~1.00 ms,平均值为0.717 ms;毛管束缚水与黏土束缚水的核磁共振T2截止值(T2 c2)分布在0.27~0.53 ms,平均值为0.36 ms。根据核磁共振T2谱弛豫时间与孔径的关系,确定了毛管束缚水与黏土束缚水的孔径截止值为4.52~5.65 nm,平均值为4.99 nm。该研究成果有利于划分页岩孔隙流体类型并计算其有效孔径下限,以期为页岩气储层的高效开发提供可靠依据。

关键词: 核磁共振, 流体划分, T2截止值, 有效孔径下限, 页岩气储层, 龙潭组, 四川盆地

Abstract: The pore structure of shale gas reservoir is complex,and the types of fluid in pores are various. According to the fluidity of fluid in pores,the pore fluids are often divided into movable water,capillary bound water and clay bound water. In order to clarify the occurrence and migration rule of pore fluid in shale gas reservoir, seven shale samples with different organic matter and mineral composition of Longtan Formation in Sichuan Basin were selected. Low field nuclear magnetic resonance(NMR)was used to measure the NMR responses of shale gas reservoir under variable centrifugal force and drying conditions at different temperatures. Based on the characteristics of the occurrence of pore fluid in the processes of centrifuging and heating,the fluid types(movable water,capillary bound water and clay bound water)in shale pores and their NMR T2 cutoff values were determined. The results show that the NMR T2 cutoff values(T2 c1)of movable water and capillary bound water change from 0.55 to 1.00 ms,with an average value of 0.717 ms,while the NMR T2 cutoff values(T2 c2)of capillary bound water and clay bound water change from 0.27 to 0.53 ms,with an average value of 0.36 ms. According to the relationship between the relaxation time of NMR T2 spectra and pore size,the cutoff values of pore size of capillary bound water and clay bound water change from 4.52 to 5.65 nm,with an average value of 4.99 nm. The research results are conducive to the classification of shale pore fluid types and the calculation of the lower limit of effective pore size,so as to provide a reliable basis for the efficient development of shale gas reservoirs.

Key words: nuclear magnetic resonance, fluid classification, T2cutoff value, lower limit of effective pore size, shale gas reservoir, Longtan Formation, Sichuan Basin

中图分类号: 

  • TE31
[1] 张吉振, 李贤庆, 郭曼, 等. 川南地区二叠系龙潭组页岩微观孔隙特征及其影响因素. 天然气地球科学, 2015, 26(8):1571-1578. ZHANG J Z, LI X Q, GUO M, et al. Microscopic pore characteristics and its influence factors of the Permian Longtan Formation shales in the southern Sichuan Basin. Natural Gas Geoscience, 2015, 26(8):1571-1578.
[2] 郑珊珊, 刘洛夫, 汪洋, 等. 川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[3] 张倩, 董艳辉, 童少青, 等. 核磁共振冷冻测孔法及其在页岩纳米孔隙表征的应用. 科学通报, 2016, 61(21):2387-2394. ZHANG Q, DONG Y H, TONG S Q, et al. Nuclear magnetic resonance cryoporometry as a tool to measure pore size distribution of shale rock. Chinese Science Bulletin, 2016, 61(21):2387-2394.
[4] 陈欢庆, 曹晨, 梁淑贤, 等. 储层孔隙结构研究进展. 天然气地球科学, 2013, 24(2):227-237. CHEN H Q, CAO C, LIANG S X, et al. Research advances on reservoir pores. Natural Gas Geoscience, 2013, 24(2):227-237.
[5] 赵佩, 李贤庆, 田兴旺, 等. 川南地区龙马溪组页岩气储层微孔隙结构特征. 天然气地球科学, 2014, 25(6):947-956. ZHAO P, LI X Q, TIAN X W, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin. Natural Gas Geoscience, 2014, 25(6):947-956.
[6] 柳娜, 周兆华, 任大忠, 等.致密砂岩气藏可动流体分布特征及其控制因素:以苏里格气田西区盒8段与山1段为例. 岩性油气藏, 2019, 31(6):14-25. LIU N, ZHOU Z H, REN D Z, et al. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir:A case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige gas field. Lithologic Reservoirs, 2019, 31(6):14-25.
[7] STRALEY C, ROSSINI D, VINEGAR H, et al. Core analysis by low-field NMR. Log Analyst, 1997, 38(2):84-93.
[8] CHI L, HEIDARI Z. Quantifying the impact of natural fractures and pore structure on NMR measurements in multiple-porosity systems. International Petroleum Technology Conference, Doha, 2014.
[9] 孙军昌, 陈静平, 杨正明, 等.页岩储层岩芯核磁共振响应特征实验研究. 科技导报, 2012, 30(14):25-30. SUN J C, CHEN J P, YANG Z M, et al. Experimental study of the NMR characteristics of shale reservoir rock. Science & Technology Review, 2012, 30(14):25-30.
[10] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2018, 30(1):140-149. LI M, WANG H, CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:A case study of Lucaogou Formation in Jimsar Sag, NW China. Lithologic Reservoirs, 2018, 30(1):140-149.
[11] SAIDIAN M, PRASAD M. Effect of mineralogy on nuclear magnetic resonance surface relaxivity:A case study of Middle Bakken and Three Forks formations. Fuel, 2015, 161:197-206.
[12] CHANG D H, VINEGAR H, MORRISS C, et al. Effective porosity, producible fluid, and permeability in carbonates from NMR logging. Log Analyst, 1997, 38(2):60-72.
[13] FREEDMAN R. Advances in NMR logging. Journal of Petroleum Technology, 2006, 58(1):60-66.
[14] LIU Y, YAO Y B, LIU D M, et al. Shale pore size classification:An NMR fluid typing method. Marine and Petroleum Geology, 2018, 96:591-601.
[15] 董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景. 天然气工业, 2014, 34(12):1-15. DONG D Z, GAO S K, HUANG J L, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin. Natural Gas Industry, 2014, 34(12):1-15.
[16] 王登, 余江浩, 赵雪松, 等. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景. 岩性油气藏, 2020, 32(1):27-35. WANG D, YU J H, ZHAO X S, et al. Accumulation conditions and exploration potential of shale gas of Ziliujing Formation in Shizhu area, Sichuan Basin. Lithologic Reservoirs, 2020, 32(1):27-35.
[17] 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组-龙马溪组为例. 中国地质, 2014, 41(3):893-901. GUO X S, HU D F, WEN Z D, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery:A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area. Geology in China, 2014, 41(3):893-901.
[18] 沈瑞, 胡志明, 郭和坤, 等. 四川盆地长宁龙马溪组页岩赋存空间及含气规律. 岩性油气藏, 2018, 30(5):11-17. SHEN R, HU Z M, GUO H K, et al. Storage space and gas content law of Longmaxi shale in Changning area,Sichuan Basin. Lithologic Reservoirs, 2018, 30(5):11-17.
[19] 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏" 富集. 石油学报, 2016, 37(5):557-571. NIE H K, JIN Z J, BIAN R K, et al. The "source-cap hydrocarbon-controlling" enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi of Sichuan Basin and its periphery. Acta Petrolei Sinica, 2016, 37(5):557-571.
[20] 张海杰, 蒋裕强, 周克明, 等.页岩气储层孔隙连通性及其对页岩气开发的启示:以四川盆地南部下志留统龙马溪组为例. 天然气工业, 2019, 39(12):22-31. ZHANG H J, JIANG Y Q, ZHOU K M, et al. Connectivity of pores in shale reservoirs and its implications for the development of shale gas:A case study of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin. Natural Gas Industry, 2019, 39(12):22-31.
[21] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组-龙马溪组页岩气形成与聚集机理. 石油勘探与开发, 2017, 44(1):69-78. BORJIGIN T G, SHEN B J, YU L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician WufengLongmaxi Formation, Sichuan Basin, SW China. Petroleum Exploration and Development, 2017, 44(1):69-78.
[22] 张静平, 唐书恒, 郭东鑫. 四川盆地下古生界筇竹寺组与龙马溪组页岩气勘探优选区预测. 地质通报, 2011, 30(2/3):357-363. ZHANG J P, TANG S H, GUO D X. Shale gas favorable area prediction of the Qiongzhusi Formation and Longmaxi Formation of Lower Paleozoic in Sichuan Basin,China. Geological Bulletin of China, 2011, 30(2/3):357-363.
[23] 黄金亮, 邹才能, 李建忠, 等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 2012, 39(1):69-75. HUANG J L, ZOU C N, LI J Z, et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin,China. Petroleum Exploration and Development, 2012, 39(1):69-75.
[24] 刘光祥, 金之钧, 邓模, 等.川东地区上二叠统龙潭组页岩气勘探潜力. 石油与天然气地质, 2015, 36(3):481-487. LIU G X, JIN Z J, DENG M, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin. Oil & Gas Geology, 2015, 36(3):481-487.
[25] 周东升, 许林峰, 潘继平, 等. 扬子地块上二叠统龙潭组页岩气勘探前景. 天然气工业, 2012, 32(12):6-10. ZHOU D S, XU L F, PAN J P, et al. Prospect of shale gas exploration in the Upper Permian Longtan Formation in the Yangtze Massif. Natural Gas Industry, 2012, 32(12):6-10.
[26] CHEN Y L, ZHANG L H, LI J C. Study of pore structure of gas shale with low-field NMR:Examples from the Longmaxi Formation, southern Sichuan Basin, China. SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, 2015.
[27] TESTAMANTI M N, REZAEE R. Determination of NMR T2cutoff for clay bound water in shales:A case study of Carynginia Formation, Perth Basin, western Australia. Journal of Petroleum Science and Engineering, 2017, 149:497-503.
[28] 王雪亮, 陈火红, 张娟娟. 低渗透和致密储层T2截止值确定方法的试验研究. 国外测井技术, 2016, 37(6):27-31. WANG X L, CHEN H H, ZHANG J J. Experimental study on determination method of T 2 cutoff value in low permeability and tight reservoirs. World Well Logging Technology, 2016, 37(6):27-31.
[29] 李彤, 郭和坤, 李海波, 等. 致密砂岩可动流体及核磁共振T2截止值的实验研究. 科学技术与工程, 2013, 13(3):701-704. LI T, GUO H K, LI H B, et al. Experimental research on movable fluid and NMR T2 cutoff in tight sandstone. Science Technology and Engineering, 2013, 13(3):701-704.
[30] 李振涛, 刘卫, 孙佃庆, 等.高孔低渗碳酸盐岩可动流体T2截止值实验研究. 西安石油大学学报(自然科学版), 2011, 26(5):53-55. LI Z T, LIU W, SUN D Q, et al. Experimental study on T2cutoff value of the movable fluid in high-porosity low-permeability carbonate rock. Journal of Xi'an Shiyou University(Natural Science Edition), 2011, 26(5):53-55.
[31] YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR). Fuel, 2010, 89:1371-1380.
[32] 李军, 武清钊, 路菁, 等. 页岩气储层总孔隙度与有效孔隙度测量及测井评价:以四川盆地龙马溪组页岩气储层为例. 石油与天然气地质, 2017, 38(3):602-609. LI J, WU Q Z, LU J, et al. Measurement and logging evaluation of total porosity and effective porosity of shale gas reservoirs:A case from Silurian Longmaxi Formation shale in the Sichuan Basin. Oil & Gas Geology, 2017, 38(3):602-609.
[33] 郭沫贞, 肖林鹏, 张生兵, 等. 低渗透砂岩油层相对渗透率曲线特征、影响因素及其对开发的影响. 沉积学报, 2008, 26(3):445-451. GUO M Z, XIAO L P, ZHANG S B, et al. Features, controls and influence for petroleum development of relative permeability curve in low permeable sandstone reservoirs. Acta Sedimentologica Sinica, 2008, 26(3):445-451.
[34] 肖立志, 柴细元, 孙宝喜, 等. 核磁共振测井资料解释与应用导论. 北京:石油工业出版社, 2001:21-23. XIAO L Z, CHAI X Y, SUN B X, et al. NMR logging interpretation and China case studies. Beijing:Petroleum Industry Press, 2001:21-23.
[1] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[2] 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34.
[3] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[4] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[5] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[6] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[7] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[8] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[9] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[10] 岑永静, 梁锋, 王立恩, 刘倩虞, 张鑫哲, 丁熊. 四川盆地蓬莱—中江地区震旦系灯影组二段成藏特征[J]. 岩性油气藏, 2024, 36(2): 89-98.
[11] 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146.
[12] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[13] 张坦, 贾梦瑶, 孙雅雄, 丁文龙, 石司宇, 范昕禹, 姚威. 四川盆地南部中二叠统茅口组岩溶古地貌恢复及特征[J]. 岩性油气藏, 2024, 36(1): 111-120.
[14] 孙汉骁, 邢凤存, 谢武仁, 钱红杉. 四川盆地及周缘地区晚奥陶世岩相古地理演化[J]. 岩性油气藏, 2024, 36(1): 121-135.
[15] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .