岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 137–146.doi: 10.12108/yxyqc.20210415

• 勘探技术 • 上一篇    下一篇

页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例

向雪冰1,2, 司马立强1,2, 王亮2,3, 李军4, 郭宇豪1,2, 张浩1,2   

  1. 1. 西南石油大学 地球科学与技术学院, 成都, 610500;
    2. 油气藏地质及开发工程国家重点实验室, 成都 610500;
    3. 成都理工大学 能源学院, 成都 610059;
    4. 中国石化石油勘探开发研究院, 北京 100083
  • 收稿日期:2020-10-09 修回日期:2020-12-29 出版日期:2021-08-01 发布日期:2021-08-06
  • 通讯作者: 王亮(1986-),男,副教授,主要从事油气测井方法、解释及地质应用方面的教学与研究工作。Email:wangliang_swpu@163.com。 E-mail:wangliang_swpu@163.com
  • 作者简介:向雪冰(1996-),女,西南石油大学在读硕士研究生,研究方向为气测井方法、解释及地质应用。地址:(610500)四川省成都市新都区新都大道8号西南石油大学成都校区。Email:Xiangxuebing1996@163.com
  • 基金资助:
    国家自然科学基金项目“页岩气储层微观孔隙结构连续定量表征与含气量评价”(编号:41504108)、国土资源部沉积盆地与油气资源重点实验室开放性基金项目“页岩气储层含气量评价”(编号:Zdsys2015003)、四川省教育厅自然科学类基金项目“页岩气储层微观孔隙结构实验表征及连续定量评价方法”(编号:15ZB0057)和中国博士后科学基金面上资助“多因素耦合作用下的致密油储层孔隙结构与含油性评价”(编号:2015M582568)联合资助

Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin

XIANG Xuebing1,2, SIMA Liqiang1,2, WANG Liang2,3, LI Jun4, GUO Yuhao1,2, ZHANG Hao1,2   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610500, China;
    3. School of Energy, Chengdu University of Technology, Chengdu 610059, China;
    4. Research Institute of Exploration Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
  • Received:2020-10-09 Revised:2020-12-29 Online:2021-08-01 Published:2021-08-06

摘要: 页岩气储层孔隙结构复杂,孔隙内富存的流体类型多样,按孔隙中流体的流动性,常将孔隙流体划分为可动水、毛管束缚水及黏土束缚水。为明确页岩气储层的孔隙流体的赋存及运移规律,选取四川盆地龙潭组7块含不同有机质及矿物组分的页岩样品,采用低场核磁共振的手段,测量了页岩气储层在变离心力与不同温度烘干状态下的低场核磁共振响应,分析页岩气储层岩心在不同离心力条件下离心以及在烘干过程中孔隙流体的赋存状态,以此对页岩孔隙流体类型进行划分;确定并划分出页岩储层的可动水、毛管束缚水和黏土束缚水的核磁共振T2截止值。实验结果表明,可动水与毛管束缚水的核磁共振T2截止值(T2 c1)分布在0.55~1.00 ms,平均值为0.717 ms;毛管束缚水与黏土束缚水的核磁共振T2截止值(T2 c2)分布在0.27~0.53 ms,平均值为0.36 ms。根据核磁共振T2谱弛豫时间与孔径的关系,确定了毛管束缚水与黏土束缚水的孔径截止值为4.52~5.65 nm,平均值为4.99 nm。该研究成果有利于划分页岩孔隙流体类型并计算其有效孔径下限,以期为页岩气储层的高效开发提供可靠依据。

关键词: 核磁共振, 流体划分, T2截止值, 有效孔径下限, 页岩气储层, 龙潭组, 四川盆地

Abstract: The pore structure of shale gas reservoir is complex,and the types of fluid in pores are various. According to the fluidity of fluid in pores,the pore fluids are often divided into movable water,capillary bound water and clay bound water. In order to clarify the occurrence and migration rule of pore fluid in shale gas reservoir, seven shale samples with different organic matter and mineral composition of Longtan Formation in Sichuan Basin were selected. Low field nuclear magnetic resonance(NMR)was used to measure the NMR responses of shale gas reservoir under variable centrifugal force and drying conditions at different temperatures. Based on the characteristics of the occurrence of pore fluid in the processes of centrifuging and heating,the fluid types(movable water,capillary bound water and clay bound water)in shale pores and their NMR T2 cutoff values were determined. The results show that the NMR T2 cutoff values(T2 c1)of movable water and capillary bound water change from 0.55 to 1.00 ms,with an average value of 0.717 ms,while the NMR T2 cutoff values(T2 c2)of capillary bound water and clay bound water change from 0.27 to 0.53 ms,with an average value of 0.36 ms. According to the relationship between the relaxation time of NMR T2 spectra and pore size,the cutoff values of pore size of capillary bound water and clay bound water change from 4.52 to 5.65 nm,with an average value of 4.99 nm. The research results are conducive to the classification of shale pore fluid types and the calculation of the lower limit of effective pore size,so as to provide a reliable basis for the efficient development of shale gas reservoirs.

Key words: nuclear magnetic resonance, fluid classification, T2cutoff value, lower limit of effective pore size, shale gas reservoir, Longtan Formation, Sichuan Basin

中图分类号: 

  • TE31
[1] 张吉振, 李贤庆, 郭曼, 等. 川南地区二叠系龙潭组页岩微观孔隙特征及其影响因素. 天然气地球科学, 2015, 26(8):1571-1578. ZHANG J Z, LI X Q, GUO M, et al. Microscopic pore characteristics and its influence factors of the Permian Longtan Formation shales in the southern Sichuan Basin. Natural Gas Geoscience, 2015, 26(8):1571-1578.
[2] 郑珊珊, 刘洛夫, 汪洋, 等. 川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[3] 张倩, 董艳辉, 童少青, 等. 核磁共振冷冻测孔法及其在页岩纳米孔隙表征的应用. 科学通报, 2016, 61(21):2387-2394. ZHANG Q, DONG Y H, TONG S Q, et al. Nuclear magnetic resonance cryoporometry as a tool to measure pore size distribution of shale rock. Chinese Science Bulletin, 2016, 61(21):2387-2394.
[4] 陈欢庆, 曹晨, 梁淑贤, 等. 储层孔隙结构研究进展. 天然气地球科学, 2013, 24(2):227-237. CHEN H Q, CAO C, LIANG S X, et al. Research advances on reservoir pores. Natural Gas Geoscience, 2013, 24(2):227-237.
[5] 赵佩, 李贤庆, 田兴旺, 等. 川南地区龙马溪组页岩气储层微孔隙结构特征. 天然气地球科学, 2014, 25(6):947-956. ZHAO P, LI X Q, TIAN X W, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin. Natural Gas Geoscience, 2014, 25(6):947-956.
[6] 柳娜, 周兆华, 任大忠, 等.致密砂岩气藏可动流体分布特征及其控制因素:以苏里格气田西区盒8段与山1段为例. 岩性油气藏, 2019, 31(6):14-25. LIU N, ZHOU Z H, REN D Z, et al. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir:A case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige gas field. Lithologic Reservoirs, 2019, 31(6):14-25.
[7] STRALEY C, ROSSINI D, VINEGAR H, et al. Core analysis by low-field NMR. Log Analyst, 1997, 38(2):84-93.
[8] CHI L, HEIDARI Z. Quantifying the impact of natural fractures and pore structure on NMR measurements in multiple-porosity systems. International Petroleum Technology Conference, Doha, 2014.
[9] 孙军昌, 陈静平, 杨正明, 等.页岩储层岩芯核磁共振响应特征实验研究. 科技导报, 2012, 30(14):25-30. SUN J C, CHEN J P, YANG Z M, et al. Experimental study of the NMR characteristics of shale reservoir rock. Science & Technology Review, 2012, 30(14):25-30.
[10] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2018, 30(1):140-149. LI M, WANG H, CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:A case study of Lucaogou Formation in Jimsar Sag, NW China. Lithologic Reservoirs, 2018, 30(1):140-149.
[11] SAIDIAN M, PRASAD M. Effect of mineralogy on nuclear magnetic resonance surface relaxivity:A case study of Middle Bakken and Three Forks formations. Fuel, 2015, 161:197-206.
[12] CHANG D H, VINEGAR H, MORRISS C, et al. Effective porosity, producible fluid, and permeability in carbonates from NMR logging. Log Analyst, 1997, 38(2):60-72.
[13] FREEDMAN R. Advances in NMR logging. Journal of Petroleum Technology, 2006, 58(1):60-66.
[14] LIU Y, YAO Y B, LIU D M, et al. Shale pore size classification:An NMR fluid typing method. Marine and Petroleum Geology, 2018, 96:591-601.
[15] 董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景. 天然气工业, 2014, 34(12):1-15. DONG D Z, GAO S K, HUANG J L, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin. Natural Gas Industry, 2014, 34(12):1-15.
[16] 王登, 余江浩, 赵雪松, 等. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景. 岩性油气藏, 2020, 32(1):27-35. WANG D, YU J H, ZHAO X S, et al. Accumulation conditions and exploration potential of shale gas of Ziliujing Formation in Shizhu area, Sichuan Basin. Lithologic Reservoirs, 2020, 32(1):27-35.
[17] 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组-龙马溪组为例. 中国地质, 2014, 41(3):893-901. GUO X S, HU D F, WEN Z D, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery:A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area. Geology in China, 2014, 41(3):893-901.
[18] 沈瑞, 胡志明, 郭和坤, 等. 四川盆地长宁龙马溪组页岩赋存空间及含气规律. 岩性油气藏, 2018, 30(5):11-17. SHEN R, HU Z M, GUO H K, et al. Storage space and gas content law of Longmaxi shale in Changning area,Sichuan Basin. Lithologic Reservoirs, 2018, 30(5):11-17.
[19] 聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏" 富集. 石油学报, 2016, 37(5):557-571. NIE H K, JIN Z J, BIAN R K, et al. The "source-cap hydrocarbon-controlling" enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi of Sichuan Basin and its periphery. Acta Petrolei Sinica, 2016, 37(5):557-571.
[20] 张海杰, 蒋裕强, 周克明, 等.页岩气储层孔隙连通性及其对页岩气开发的启示:以四川盆地南部下志留统龙马溪组为例. 天然气工业, 2019, 39(12):22-31. ZHANG H J, JIANG Y Q, ZHOU K M, et al. Connectivity of pores in shale reservoirs and its implications for the development of shale gas:A case study of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin. Natural Gas Industry, 2019, 39(12):22-31.
[21] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组-龙马溪组页岩气形成与聚集机理. 石油勘探与开发, 2017, 44(1):69-78. BORJIGIN T G, SHEN B J, YU L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician WufengLongmaxi Formation, Sichuan Basin, SW China. Petroleum Exploration and Development, 2017, 44(1):69-78.
[22] 张静平, 唐书恒, 郭东鑫. 四川盆地下古生界筇竹寺组与龙马溪组页岩气勘探优选区预测. 地质通报, 2011, 30(2/3):357-363. ZHANG J P, TANG S H, GUO D X. Shale gas favorable area prediction of the Qiongzhusi Formation and Longmaxi Formation of Lower Paleozoic in Sichuan Basin,China. Geological Bulletin of China, 2011, 30(2/3):357-363.
[23] 黄金亮, 邹才能, 李建忠, 等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 2012, 39(1):69-75. HUANG J L, ZOU C N, LI J Z, et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin,China. Petroleum Exploration and Development, 2012, 39(1):69-75.
[24] 刘光祥, 金之钧, 邓模, 等.川东地区上二叠统龙潭组页岩气勘探潜力. 石油与天然气地质, 2015, 36(3):481-487. LIU G X, JIN Z J, DENG M, et al. Exploration potential for shale gas in the Upper Permian Longtan Formation in eastern Sichuan Basin. Oil & Gas Geology, 2015, 36(3):481-487.
[25] 周东升, 许林峰, 潘继平, 等. 扬子地块上二叠统龙潭组页岩气勘探前景. 天然气工业, 2012, 32(12):6-10. ZHOU D S, XU L F, PAN J P, et al. Prospect of shale gas exploration in the Upper Permian Longtan Formation in the Yangtze Massif. Natural Gas Industry, 2012, 32(12):6-10.
[26] CHEN Y L, ZHANG L H, LI J C. Study of pore structure of gas shale with low-field NMR:Examples from the Longmaxi Formation, southern Sichuan Basin, China. SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, 2015.
[27] TESTAMANTI M N, REZAEE R. Determination of NMR T2cutoff for clay bound water in shales:A case study of Carynginia Formation, Perth Basin, western Australia. Journal of Petroleum Science and Engineering, 2017, 149:497-503.
[28] 王雪亮, 陈火红, 张娟娟. 低渗透和致密储层T2截止值确定方法的试验研究. 国外测井技术, 2016, 37(6):27-31. WANG X L, CHEN H H, ZHANG J J. Experimental study on determination method of T 2 cutoff value in low permeability and tight reservoirs. World Well Logging Technology, 2016, 37(6):27-31.
[29] 李彤, 郭和坤, 李海波, 等. 致密砂岩可动流体及核磁共振T2截止值的实验研究. 科学技术与工程, 2013, 13(3):701-704. LI T, GUO H K, LI H B, et al. Experimental research on movable fluid and NMR T2 cutoff in tight sandstone. Science Technology and Engineering, 2013, 13(3):701-704.
[30] 李振涛, 刘卫, 孙佃庆, 等.高孔低渗碳酸盐岩可动流体T2截止值实验研究. 西安石油大学学报(自然科学版), 2011, 26(5):53-55. LI Z T, LIU W, SUN D Q, et al. Experimental study on T2cutoff value of the movable fluid in high-porosity low-permeability carbonate rock. Journal of Xi'an Shiyou University(Natural Science Edition), 2011, 26(5):53-55.
[31] YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR). Fuel, 2010, 89:1371-1380.
[32] 李军, 武清钊, 路菁, 等. 页岩气储层总孔隙度与有效孔隙度测量及测井评价:以四川盆地龙马溪组页岩气储层为例. 石油与天然气地质, 2017, 38(3):602-609. LI J, WU Q Z, LU J, et al. Measurement and logging evaluation of total porosity and effective porosity of shale gas reservoirs:A case from Silurian Longmaxi Formation shale in the Sichuan Basin. Oil & Gas Geology, 2017, 38(3):602-609.
[33] 郭沫贞, 肖林鹏, 张生兵, 等. 低渗透砂岩油层相对渗透率曲线特征、影响因素及其对开发的影响. 沉积学报, 2008, 26(3):445-451. GUO M Z, XIAO L P, ZHANG S B, et al. Features, controls and influence for petroleum development of relative permeability curve in low permeable sandstone reservoirs. Acta Sedimentologica Sinica, 2008, 26(3):445-451.
[34] 肖立志, 柴细元, 孙宝喜, 等. 核磁共振测井资料解释与应用导论. 北京:石油工业出版社, 2001:21-23. XIAO L Z, CHAI X Y, SUN B X, et al. NMR logging interpretation and China case studies. Beijing:Petroleum Industry Press, 2001:21-23.
[1] 徐诗雨, 林怡, 曾乙洋, 赵春妮, 何开来, 杨京, 黎洋, 祝怡. 川西北双鱼石地区下二叠统栖霞组气水分布特征及主控因素[J]. 岩性油气藏, 2022, 34(1): 63-72.
[2] 毛锐, 牟立伟, 王刚, 樊海涛. 基于核磁共振自由弛豫特征的含油性评价方法——以玛湖凹陷下乌尔禾组砾岩储层为例[J]. 岩性油气藏, 2021, 33(5): 140-147.
[3] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[4] 杨荣军, 彭平, 张静, 叶茂, 文华国. 四川盆地奉节地区上古生界古隆起特征及地质意义[J]. 岩性油气藏, 2021, 33(4): 1-9.
[5] 张本健, 田云英, 曾琪, 尹宏, 丁熊. 四川盆地西北部三叠系须三段砂砾岩沉积特征[J]. 岩性油气藏, 2021, 33(4): 20-28.
[6] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[7] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[8] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[9] 彭军, 褚江天, 陈友莲, 文舰, 李亚丁, 邓思思. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征[J]. 岩性油气藏, 2020, 32(4): 12-22.
[10] 戴晓峰, 谢占安, 杜本强, 张明, 唐廷科, 李军, 牟川. 高石梯—磨溪地区灯影组多次波控制因素及预测方法[J]. 岩性油气藏, 2020, 32(4): 89-97.
[11] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[12] 张满郎, 孔凡志, 谷江锐, 郭振华, 付晶, 郑国强, 钱品淑. 九龙山气田珍珠冲组砂砾岩储层评价及有利区优选[J]. 岩性油气藏, 2020, 32(3): 1-13.
[13] 杨甫, 贺丹, 马东民, 段中会, 田涛, 付德亮. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3): 14-23.
[14] 张亚, 陈双玲, 张晓丽, 张玺华, 谢忱, 陈聪, 杨雨然, 高兆龙. 四川盆地茅口组岩溶古地貌刻画及油气勘探意义[J]. 岩性油气藏, 2020, 32(3): 44-55.
[15] 程辉, 王付勇, 宰芸, 周树勋. 基于高压压汞和核磁共振的致密砂岩渗透率预测[J]. 岩性油气藏, 2020, 32(3): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[2] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[3] 于常青, 杨午阳, 杨文采. 关于油气地震勘探的基础研究问题[J]. 岩性油气藏, 2007, 19(2): 117 -120 .
[4] 王辉, 王凤琴. 甘谷驿油田共大滩区延长组长6 段非均质模式与油气分布[J]. 岩性油气藏, 2008, 20(2): 48 -53 .
[5] 阳伟, 田景春, 夏青松, 王峰. 鄂尔多斯盆地渭北地区上三叠统延长组长6 油层沉积微相特征研究[J]. 岩性油气藏, 2008, 20(3): 69 -73 .
[6] 刘卫华,高建虎,陈启艳,董雪华. 苏里格气田某工区储层预测可行性研究[J]. 岩性油气藏, 2009, 21(2): 94 -98 .
[7] 林辉. 川东北达县—宣汉地区双庙场构造嘉二段储层特征[J]. 岩性油气藏, 2009, 21(2): 59 -63 .
[8] 陈超, 楼章华, 金爱民. 饱和水与干燥碳酸盐岩声波各向异性研究[J]. 岩性油气藏, 2017, 29(4): 131 -137 .
[9] 李在光,陈启林,吕锡敏,杨占龙,黄云峰,吴青鹏. 吐哈盆地北部山前带石油地质条件及勘探方向[J]. 岩性油气藏, 2009, 21(3): 29 -34 .
[10] 周立宏,肖敦清,蒲秀刚,李洪香. 陆相断陷湖盆复式叠合油气成藏与优势相富集新模式———以渤海湾盆地歧口凹陷为例[J]. 岩性油气藏, 2010, 22(1): 7 -11 .