岩性油气藏 ›› 2024, Vol. 36 ›› Issue (3): 137–145.doi: 10.12108/yxyqc.20240313

• 地质勘探 • 上一篇    下一篇

四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模

计玉冰1, 郭冰如2, 梅珏1, 尹志军2, 邹辰1   

  1. 1. 中国石油浙江油田公司 勘探开发一体化中心, 杭州 310023;
    2. 中国石油大学(北京)地球科学学院, 北京 102249
  • 收稿日期:2022-11-17 修回日期:2023-01-28 出版日期:2024-05-01 发布日期:2024-04-30
  • 第一作者:计玉冰(1989—),男,硕士,高级工程师,主要从事油气地质综合研究方面的工作。地址:(310023)浙江省杭州市西湖区留下街道荆山岭浙江油田公司。Email:jiyb85@petrochina.com.cn。
  • 通信作者: 郭冰如(1998—),男,中国石油大学(北京)在读硕士研究生,研究方向为油气田开发地质。Email:bingru_guo@163.com。
  • 基金资助:
    国家科技重大专项“昭通页岩气勘探开发示范工程”(编号:2017ZX05063)与中国石油天然气集团有限公司重大现场试验项目“深层页岩气有效开采关键技术攻关与试验”(编号:2019F-13)联合资助。

Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin

JI Yubing1, GUO Bingru2, MEI Jue1, YIN Zhijun2, ZOU Chen1   

  1. 1. Integration Center of Exploration & Development, PetroChina Zhejiang Oilfield Company, Hangzhou 310023, China;
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2022-11-17 Revised:2023-01-28 Online:2024-05-01 Published:2024-04-30

摘要: 基于岩心分析、成像测井分析和三维地震资料,对四川盆地南缘昭通示范区罗布向斜龙一 1亚段和五峰组的多尺度离散裂缝网络建模方法进行了研究。研究结果表明:①将蚂蚁体属性中的强响应部分确定性提取成面,可得到大尺度离散裂缝网络模型;用蚂蚁体沿层切片显示的带走向趋势的裂缝参与小尺度离散裂缝网络建模,降低了小尺度裂缝走向模拟的不确定性。②罗布向斜龙一1亚段和五峰组裂缝以高角度剪切缝为主,多被方解石充填,裂缝走向为北东—南西向,成像测井解释的裂缝走向与附近地震解释的断层走向一致。③大尺度离散裂缝网络模型与钻井的断层位置相符,小尺度裂缝发育部位与钻井液漏失部位吻合,多尺度离散裂缝网络模型可较好地表征罗布向斜龙一1亚段和五峰组的裂缝发育特征。④罗布向斜 Y12H 井应用多尺度离散裂缝网络模型优化压裂方案,压裂缝网复杂度高,试气产量较邻井提高了近 41%,优化小尺度裂缝走向后的多尺度离散裂缝网络模型实际应用效果较好。

关键词: 多尺度裂缝建模, 离散裂缝网络模型, 蚂蚁体, 页岩储层, 龙马溪组, 志留系, 罗布向斜, 昭通示范区, 四川盆地

Abstract: Based on core analysis, imaging logging analysis and 3D seismic data, a multi-scale discrete fracture network modeling method was studied for Long-1 submember of Longmaxi Formation and Wufeng Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin. The results show that:(1)Extracting the strong response part of ant tracking attributes as a surface can obtain a large-scale discrete fracture network model. Small scale fracture modeling can be established using the random discrete fracture network modeling method, which uses the trend of the fracture band shown by ant tracking properties along the layer slice, which reduces the uncertainty of small-scale fracture simulation.(2)The fractures of Long-1 submember of Longmaxi Formation and Wufeng Formation in Luobu syncline are mainly high angle shear fractures, mostly filled with calcite. The main direction of the fractures is northeast southwest, and the fracture direction explained by imaging logging is consistent with the fault direction explained by nearby seismic interpretation(. 3)The large-scale discrete fracture network model is consistent with the fault location of the drilling, and the development of small-scale fractures is consistent with the leakage of drilling fluid, indicating that the multi-scale discrete fracture network model can better represent the fracture development characteristics of Long-1 submember of Longmaxi Formation and Wufeng Formation in Luobu syncline.(4)The multi-scale discrete fracture network model was applied to optimize the hydraulic fracturing scheme for well Y12H in Luobu syncline, resulting in a high complexity of hydraulic fracturing network and nearly 41% increase in gas production compared to adjacent wells. The multi-scale discrete fracture network model after optimizing the small-scale fracture orientation has a good practical application effect.

Key words: multi-scale fracture modeling, discrete fracture network model, ant-tracking attribute volume, shale reservoir, Longmaxi Formation, Silurian, Luobu Syncline, Zhaotong National Shale Gas Demonstration Area, Sichuan Basin

中图分类号: 

  • TE122.2
[1] 梁兴,张廷山,舒红林,等. 滇黔北昭通示范区龙马溪组页岩气资源潜力评价[J]. 中国地质,2020,47(1):72-87. LIANG Xing,ZHANG Tingshan,SHU Honglin,et al. Evaluation of shale gas resource potential of Longmaxi Formation in Zhaotong National Shale Gas Demonstration Area in the northern Yunnan-Guizhou[J]. Geology in China,2020,47(1):72-87.
[2] 余凯,鲜成钢,文恒,等. 昭通国家级示范区浅层页岩气立体开发探索:以海坝背斜南翼YS203H1平台为例[J]. 地球科学,2023,48(1):252-266. YU Kai,XIAN Chenggang,WEN Heng,et al. Stereoscopic development exploration of shallow shale gas in Zhaotong National Shale Gas Demonstration Area:Case study of YS203H1 Pad of Haiba anticline southern limb[J]. Earth Science,2023, 48(1):252-266.
[3] 徐政语,梁兴,鲁慧丽,等. 四川盆地南缘昭通页岩气示范区构造变形特征及页岩气保存条件[J]. 天然气工业,2019,39(10):22-31. XU Zhengyu,LIANG Xing,LU Huili,et al. Structural deformation characteristics and shale gas preservation conditions in the Zhaotong National Shale Gas Demonstration Area along the southern margin of the Sichuan Basin[J]. Natural Gas Industry,2019,39(10):22-31.
[4] 舒红林,王利芝,尹开贵,等. 地质工程一体化实施过程中的页岩气藏地质建模[J].中国石油勘探,2020,25(2):84-95. SHU Honglin,WANG Lizhi,YIN Kaigui,et al. Geological modeling of shale gas reservoir during the implementation process of geology-engineering integration[J]. China Petroleum Exploration,2020,25(2):84-95.
[5] 梁兴,张朝,单长安,等. 山地浅层页岩气勘探挑战、对策与前景:以昭通国家级页岩气示范区为例[J].天然气工业,2021, 41(2):27-36. LIANG Xing,ZHANG Zhao,SHAN Chang'an,et al. Exploration challenges,countermeasures and prospect of mountain shallow shale gas:A cased study on the Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry,2021, 41(2):27-36.
[6] 卞晓冰,侯磊,蒋廷学,等. 深层页岩裂缝形态影响因素[J]. 岩性油气藏,2019,31(6):161-168. BIAN Xiaobing,HOU Lei,JIANG Tingxue,et al. Influencing factors of fracture geometry in deep shale gas wells[J]. Lithologic Reservoirs,2019,31(6):161-168.
[7] 吴斌,唐洪,张婷,等. 两种新颖的离散裂缝建模方法探讨:DFN模型和DFM模型[J]. 四川地质学报,2010,30(4):484- 487. WU Bin,TANG Hong,ZHANG Ting,et al. An approach to discrete fracture network stochastic modeling:DFN model and DFM model[J]. Acta Geologica Sichuan,2010,30(4):484- 487.
[8] 王建君,李井亮,李林,等. 基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例[J]. 岩性油气藏,2020,32(5):122-132. WANG Jianjun,LI Jingliang,LI Lin,et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area[J]. Lithologic Reservoirs,2020,32(5):122-132.
[9] 郎晓玲,郭召杰. 基于DFN离散裂缝网络模型的裂缝性储层建模方法[J]. 北京大学学报(自然科学版),2013,49(6):964- 972. LANG Xiaoling,GUO Zhaojie. Fractured reservoir modeling method based on discrete fracture network model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2013,49(6):964-972.
[10] 薛艳梅,夏东领,苏宗富,等. 多信息融合分级裂缝建模[J]. 西南石油大学学报(自然科学版),2014,36(2):57-63. XUE Yanmei,XIA Dongling,SU Zongfu,et al. Fracture modeling at different scales based on convergent multi-source information[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2014,36(2):57-63.
[11] 赵春段,张介辉,蒋佩,等. 页岩气地质工程一体化过程中的多尺度裂缝建模及其应用[J]. 石油物探,2022,61(4):719-732. ZHAO Chunduan,ZHANG Jiehui,JIANG Pei,et al. Multiscale fracture modeling and its application in shale gas geology and engineering integration[J]. Geophysical Prospecting for Petroleum,2022,61(4):719-732.
[12] 吴奇,梁兴,鲜成钢,等. 地质-工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探,2015,20(4):1-23. WU Qi,LIANG Xing,XIAN Chenggang,et al. Geoscience-toproduction integration ensures effective and efficient south China marine shale gas development[J]. China Petroleum Exploration,2015,20(4):1-23.
[13] 伍坤宇,张廷山,杨洋,等. 昭通示范区黄金坝气田五峰-龙马溪组页岩气储层地质特征[J]. 中国地质,2016,43(1):275-287. WU Kunyu,ZHANG Tingshan,YANG Yang,et al. Geological characteristics of Wufeng-Longmaxi shale-gas reservoir in the Huangjinba gas field,Zhaotong National Shale Gas Demonstration Area[J]. Geology in China,2016,43(1):275-287.
[14] 李可,王兴志,张馨艺,等. 四川盆地东部下志留统龙马溪组页岩储层特征及影响因素[J]. 岩性油气藏,2016,28(5):52-58. LI Ke,WANG Xingzhi,ZHANG Xinyi,et al. Shale reservoir characteristics and influencing factors of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin[J]. Lithologic Reservoirs,2016,28(5):52-58.
[15] 陈袁,廖发明,吕波,等. 塔里木盆地迪那2气田多信息分级次离散裂缝表征及建模[J]. 岩性油气藏,2022,34(3):104-116. CHEN Yuan,LIAO Faming,LYU Bo,et al. Discrete fracture characterization and multi-scale modeling with different information in Dina-2 gas field,Tarim Basin[J]. Lithologic Reservoirs,2022,34(3):104-116.
[16] 李培培,赵汝敏,杨松岭,等. 构造曲率与振幅曲率在地震资料解释中的应用[J]. 物探与化探,2013,37(5):916-920. LI Peipei,ZHAO Rumin,YANG Songling,et al. The application of structural curvature and amplitude curvature attribute to seismic interpretation[J]. Geophysical and Geochemical Exploration,2013,37(5):916-920.
[17] 朱成宏,黄国骞,秦瞳. 断裂系统精细分析技术[J]. 石油物探,2002,41(1):42-48. ZHU Chenghong,HUANG Guoqian,QIN Tong. Methods for detailed fracture system description[J]. Geophysical Prospecting for Petroleum,2002,41(1):42-48.
[18] 谢清惠,蒋立伟,赵春段,等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探,2021,45(5):1295-1302. XIE Qinghui,JIANG Liwei,ZHAO Chunduan,et al. Application study of improving the precision of the ant-tracking-based fracture prediction technique[J]. Geophysical and Geochemical Exploration,2021,45(5):1295-1302.
[19] 董少群,曾联波,XU Chaoshui,等. 储层裂缝随机建模方法研究进展[J]. 石油地球物理勘探,2018,53(3):625-641. DONG Shaoqun,ZENG Lianbo,XU Chaoshui,et al. Some progress in reservoir fracture stochastic modeling research[J]. Oil Geophysical Prospecting,2018,53(3):625-641.
[20] 张晓诚,霍宏博,林家昱,等. 渤海油田裂缝性油藏地质工程一体化井漏预警技术[J]. 石油钻探技术,2022,50(6):72-77. ZHANG Xiaocheng,HUO Hongbo,LIN Jiayu,et al. Integrated geology-engineering early warning technologies for lost circulation of fractured reservoirs in Bohai Oilfield[J]. Petroleum Drilling Techniques,2022,50(6):72-77.
[1] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[2] 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132.
[3] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[4] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[5] 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34.
[6] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[7] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[8] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[9] 岑永静, 梁锋, 王立恩, 刘倩虞, 张鑫哲, 丁熊. 四川盆地蓬莱—中江地区震旦系灯影组二段成藏特征[J]. 岩性油气藏, 2024, 36(2): 89-98.
[10] 张文播, 李亚, 杨田, 彭思桥, 蔡来星, 任启强. 四川盆地简阳地区二叠系火山碎屑岩储层特征与成岩演化[J]. 岩性油气藏, 2024, 36(2): 136-146.
[11] 孙汉骁, 邢凤存, 谢武仁, 钱红杉. 四川盆地及周缘地区晚奥陶世岩相古地理演化[J]. 岩性油气藏, 2024, 36(1): 121-135.
[12] 李毕松, 苏建龙, 蒲勇, 缪志伟, 张文军, 肖伟, 张雷, 江馀. 四川盆地元坝地区二叠系茅口组相控岩溶刻画及预测[J]. 岩性油气藏, 2024, 36(1): 69-77.
[13] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[14] 张坦, 贾梦瑶, 孙雅雄, 丁文龙, 石司宇, 范昕禹, 姚威. 四川盆地南部中二叠统茅口组岩溶古地貌恢复及特征[J]. 岩性油气藏, 2024, 36(1): 111-120.
[15] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .