岩性油气藏 ›› 2023, Vol. 35 ›› Issue (5): 153160.doi: 10.12108/yxyqc.20230515
岳世俊1, 刘应如1, 项燚伟2, 王玉林1, 陈汾君2, 郑长龙1, 景紫岩1, 张婷静1
YUE Shijun1, LIU Yingru1, XIANG Yiwei2, WANG Yulin1, CHEN Fenjun2, ZHENG Changlong1, JING Ziyan1, ZHANG Tingjing1
摘要: 以均质径向地层边水气藏为例,基于水驱气藏的物质平衡理论,推导了地层平均含水饱和度与出口端含水饱和度的关系;引入存水体积系数,建立了平均含水饱和度与气藏动态储量和水侵量的联系,计算气藏动态储量和水侵量;将该方法运用于柴达木盆地台南气田第四系涩北组第6小层,以视地质储量法验证了动态地质储量,以数值模拟法验证了水侵量的计算结果。研究结果表明: ①均质径向地层边水气藏中,地层平均含水饱和度与出口端含水饱和度呈线性正相关; ②通过平均饱和度计算气藏动态储量时,应选取开发中后期趋于稳定的数据,此时地层压降波及到储层边界,能反映全工区真实的动态储量,而早期数据计算的结果偏小; ③通过平均饱和度计算的柴达木盆地台南气田第四系涩北组第6小层的动态地质储量为80.1×108 m3,与视地质储量法计算的动态地质储量误差为1%,通过平均饱和度计算的水侵量与数值模拟法计算的水侵量误差约为10%。
中图分类号:
[1] 李士伦.天然气工程[M].北京:石油工业出版社, 2008. LI Shilun. Gas reservoir engineering[M]. Beijing:Petroleum Industry Press, 2008. [2] 李传亮.油藏工程原理[M].北京:石油工业出版社, 2011. LI Chuanliang. Textbook for higher education principles of reservoir engineering 2nd edition[M]. Beijing:Petroleum Industry Press, 2011. [3] 李冬梅,李会会,朱苏阳,等.断溶体油气藏流动物质平衡方法[J].岩性油气藏, 2022, 34(1):154-162. LI Dongmei, LI Huihui, ZHU Suyang, et al. Modified flowing material balance method for fault-karst reservoirs[J]. Lithologic Reservoirs, 2022, 34(1):154-162. [4] 邓绍强,黄全华,肖莉,等.低渗透气藏储量早期预测[J].西南石油学院学报, 2005, 27(6):33-36. DENG Shaoqiang, HUANG Quanhua, XIAO Li, et al. Early prediction of reserves of low permeability gas reservoir[J]. Journal of Southwest Petroleum University, 2005, 27(6):33-36. [5] 李昌绵,李爽,柳琳,等.苏里格气田苏S区块高含水气藏气水识别及开发对策研究[J].非常规油气, 2022, 9(3):64-71. LI Changmian, LI Shuang, LIU Lin, et al. Study on gas-water identification and development strategyof high water-cut gas reservoir in Su S block of Sulige gas field[J]. Unconventional Oil & Gas, 2022, 9(3):64-71. [6] 邓成刚,李江涛,柴小颖,等.涩北气田弱水驱气藏水侵早期识别方法[J].岩性油气藏, 2020, 32(1):128-134. DENG Chenggang, LI Jiangtao, CHAI Xiaoying, et al. Early identification methods of water invasion in weak water drive gas reservoirs in Sebei gas field, Qaidam Basin[J]. Lithologic Reservoirs, 2020, 32(1):128-134. [7] 王怒涛,唐刚,任洪伟.水驱气藏水侵量及水体参数计算最优化方法[J].天然气工业, 2005, 25(5):75-77. WANG Nutao, TANG Gang, REN Hongwei. Optimized calculating method of aquifer influx and parameters for water-drive gas reservoirs[J]. Natural Gas Industry, 2005, 25(5):75-77. [8] 闫正和,石军太,秦峰,等.水驱气藏动态储量和水侵量计算新方法[J].中国海上油气, 2021, 33(1):93-102. YAN Zhenghe, SHI Juntai, QIN Feng, et al. A new method for calculating dynamic reserves and water influx of water drive gas reservoirs[J]. China Offshore Oil and Gas, 2021, 33(1):93-102. [9] 桑頔.普光气田水侵过程中气水互驱两相渗流机理研究[D].成都:西南石油大学, 2018. SANG Di. Research of two-phase flow mechanism of gas water interaction in Puguang gas field during the water invasion[D]. Chengdu:Southwest Petroleum University, 2018. [10] 熊伟,朱志强,高树生,等.考虑封闭气的水驱气藏物质平衡方程[J].石油钻探技术, 2012, 40(2):93-97. XIONG Wei, ZHU Zhiqiang, GAO Shusheng, et al. Material balance equation for water-driven gas reservoirs considering closed gas[J]. Petroleum Drilling Technology, 2012, 40(2):93-97. [11] 鹿克峰.水驱气藏水侵预测经典经验关系式lnω=BlnR的适用性分析[J].中国海上油气, 2016, 28(6):40-45. LU Kefeng. Analysis of the applicability of the classical empirical relation lnω=BlnR for water intrusion prediction in waterdriven gas reservoirs[J]. China Offshore Oil and Gas, 2016, 28(6):40-45. [12] TORKJELL S, OLA E, MARTIN L. Gravimetric monitoring of gas-reservoir water influx:A combined flow and gravity-modeling approach[J]. Geophysics, 2008, 73(6):123-131. [13] KRUMMEL A T, DATTA S S, MUNSTER S, et al. Visualizing multiphase flow and trapped fluid configurations in a model Three-dimensional porous medium[J]. Aiche Journal, 2013, 59(3):1022-1029. [14] JIAO Yuwei, XIA Jing, LIU Pengcheng, et al. New material balance analysis methond for abnormally high-pressured gas-hydrocarbon reservoir with water influx[J]. International Journal of Hydrogen Energy, 2017, 42(29):18718-18727. [15] FENG Qing, JIA Han, HUANG Zijun, et al. Calculation model for water influx and controlled reserves for CBM wells with high water field[J]. Petroleum Research, 2018, 3(3):288-292. [16] FENG Xi, ZHONG Bing, YANG Xuefeng, et al. Effective water influx control in gas reservoir development:Problems and countermeasures[J]. Natural Gas Industry, 2015, 2(2/3):240-246. [17] VASCO D W,HENK K,JALAL K,et al. Seismic imaging of reservoir flow properties:Resolving water influx and reservoir permeability[J]. Geophysics, 2008, 73(1):1-13. [18] MACHADO M V B. Numerical laplace inversion methods:Application to the calculation of the water influx from aquifers connected to petroleum reservoirs[J]. Petroleum Science and Technology, 2012, 30(1):74-88. [19] 张国东,李敏,柏冬岭.高压超高压天然气偏差系数实用计算模型:LXF高压高精度天然气偏差系数解析模型的修正[J].天然气工业, 2005, 25(8):79-80. ZHANG Guodong, LI Min, BAI Dongling. Practical calculating model of gas deviation factor with high and super:High pressure[J]. Natural Gas Industry, 2005, 25(8):79-80. [20] 刘启国,刘振平,王宏玉,等.利用生产数据计算气井控制储量和水侵量[J].石油钻探技术, 2015, 43(1):96-99. LIU Qiguo, LIU Zhenping, WANG Hongyu, et al. A method to calculate gas well controlled reservesand water influx from production data[J]. Petroleum Drilling Techniques, 2015, 43(1):96-99. [21] 鹿克峰,马恋,刘彬彬,等.水驱气藏早期直线外推动储量探讨[J].岩性油气藏, 2019, 31(1):153-158. LU Kefeng, MA Lian, LIU Binbin, et al. Dynamic reserves calculated by linear relationship in the early development of water-drive gas reservoir[J]. Lithologic Reservoirs, 2019, 31(1):153-158. [22] 张宏友,邓琪,牟春荣,等.水驱砂岩油藏理论含水上升率计算新方法:对分流量方程法的校正[J].中国海上油气, 2015, 27(3):79-82. ZHANG Hongyou, DENG Qi, MOU Chunrong, et al. A New method for computing the increased rate of water cut for waterflooding sandstone reservoirs:A correction of fractional flow equation method[J]. China Offshore Oil and Gas, 2015, 27(3):79-82. [23] 罗沛,杨云,柴小颖,等.东坪基岩气藏气水相对渗透率的确定方法[J].西南石油大学学报(自然科学版), 2021, 43(2):93-100. LUO Pei, YANG Yun, CHAI Xiaoying, et al. Determination of gas-water relative permeability of Dongping bedrock gas reservoir[J]. Journal of Southwest Petroleum University (Natural Science Edition), 2021, 43(2):93-100. [24] 李传亮,王凤兰,杜庆龙,等.砂岩油藏特高含水期的水驱特征[J].岩性油气藏, 2021, 33(5):163-171. LI Chuanliang, WANG Fenglan, DU Qinglong, et al. Water displacement rules of sandstone reservoirsat extra-high water-cut stage[J]. Lithologic Reservoirs, 2021, 33(5):163-171. [25] 杨玉斌,肖文联,韩建,等.丹凤场气田致密砂岩气水渗流特征及影响因素[J].油气藏评价与开发, 2022, 12(2):356-364. YANG Yubin, XIAO Wenlian, HAN Jian, et al. Gas-water flow characteristics and influencing factors of tight sandstone in Danfengchang gas field[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2):356-364. [26] 谭先红,梁斌,王帅,等.一种低渗储层凝析气藏气井产能评价方法研究[J].油气藏评价与开发, 2021, 11(5):724-729. TAN Xianhong, LIANG Bin, WANG Shuai, et al. A productivity evaluation method of gas wells in condensate gas reservoirs with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5):724-729. [27] 胡伟,杨胜来,翟羽佳,等.油-水相对渗透率曲线优化校正新方法[J].石油学报, 2015, 36(7):871-875. HU Wei, YANG Shenglai, ZHAI Yujia, et al. A new optimization and correction method of oil-waterphase relative permeability curve[J]. Acta Petrolei Sinica, 2015, 36(7):871-875. [28] 何贤,闫建平,王敏,等.低渗透砂岩孔隙结构与采油产能关系:以东营凹陷南坡F154区块为例[J].岩性油气藏, 2022, 34(1):106-117. HE Xian, YAN Jianping, WANG Min, et al. Relationship between pore structure and oil production capacity of low permeability sandstone:A case study of block F154 in south slope of Dongying Sag[J]. Lithologic Reservoirs, 2022, 34(1):106-117. [29] 尹洪军,付莹,王美楠.基于流管法低渗透油藏开发数值模拟研究[J].石油化工高等学校学报, 2015, 28(3):61-65. YIN Hongjun, FU Ying, WANG Meinan. Numerical simulation research for low-permeability reservoirs based on stream-tube model[J]. Journal of Petrochemical Universities, 2015, 28(3):61-65. |
[1] | 秦正山, 何勇明, 丁洋洋, 李柏宏, 孙双双. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188. |
[2] | 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39. |
[3] | 司马立强, 马骏, 刘俊丰, 杨会洁, 王亮, 赵宁. 柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价[J]. 岩性油气藏, 2023, 35(2): 1-10. |
[4] | 完颜泽, 龙国徽, 杨巍, 柴京超, 马新民, 唐丽, 赵健, 李海鹏. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102. |
[5] | 杨韬政, 刘成林, 田继先, 李培, 冉钰, 冯德浩, 李国雄, 吴育平. 柴达木盆地大风山凸起地层压力预测及成因分析[J]. 岩性油气藏, 2023, 35(1): 96-107. |
[6] | 夏青松, 陆江, 杨鹏, 张昆, 杨朝屹, 聂俊杰, 朱云舫, 李立芳. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征[J]. 岩性油气藏, 2023, 35(1): 132-144. |
[7] | 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18. |
[8] | 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53. |
[9] | 赵思思, 李建明, 柳金城, 李积永, 崔俊. 柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造[J]. 岩性油气藏, 2022, 34(2): 66-74. |
[10] | 李冬梅, 李会会, 朱苏阳, 李涛. 断溶体油气藏流动物质平衡方法[J]. 岩性油气藏, 2022, 34(1): 154-162. |
[11] | 杜江民, 龙鹏宇, 秦莹民, 张桐, 马宏宇, 盛军. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏, 2021, 33(5): 1-10. |
[12] | 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73. |
[13] | 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84. |
[14] | 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160. |
[15] | 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144. |
|