岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 154–162.doi: 10.12108/yxyqc.20220116

• 油气田开发 • 上一篇    下一篇

断溶体油气藏流动物质平衡方法

李冬梅1, 李会会1, 朱苏阳2, 李涛3   

  1. 1. 中国石化西北油田分公司完井测试管理中心, 新疆轮台 841600;
    2. 油气藏地质及开发工程国家重点实验室(西南石油大学), 成都 610599;
    3. 中国石化西北油田分公司油气开发管理部, 乌鲁木齐 830001
  • 收稿日期:2021-04-25 修回日期:2021-07-18 发布日期:2022-01-21
  • 通讯作者: 李会会(1987—),女,硕士,工程师,主要从事碳酸盐岩缝洞型油藏的完井测试与综合研究工作。Email:lihh.xbsj@sinopec.com。 E-mail:lihh.xbsj@sinopec.com
  • 作者简介:李冬梅(1973-),女,博士,高级工程师,主要从事碳酸盐岩缝洞型油藏的完井测试与综合研究工作。地址:(841600)新疆巴州轮台县轮南镇采油三队完井测试管理中心。Email:lidongmei.xbsj@sinopec.com
  • 基金资助:
    国家自然科学基金“垂直疏水性圆管湍流场中多液滴形成机制及其携带模型研究”(编号:51974263)资助

Modified flowing material balance method for fault-karst reservoirs

LI Dongmei1, LI Huihui1, ZHU Suyang2, LI Tao3   

  1. 1. Management Center of Well Completion and Test, Sinopec Northwest Oilfield Company, Luntai 841600, Xinjiang, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610599, China;
    3. Department of Oil and Gas Development Management, Sinopec Northwest Oilfield Company, Urumqi 830001, China
  • Received:2021-04-25 Revised:2021-07-18 Published:2022-01-21

摘要: 断溶体油藏由于“竖板”状的特珠形态,需要针对其流动特征,建立具有针对性的流动物质平衡方法。采用图示法分析了断溶体油藏油气流动模式,根据不同的流动特征以及对应的产能方程计算了油藏的渗透率,在此基础上建立了断溶体油藏的流动物质平衡新方法,并通过数值模型,验证了新方法的适用性。结果表明:断溶体油藏直井中的流动模式为线性流,与常规油藏水平井的流动特征相似,而断溶体油藏水平井中的流动模式为径向流,类似于常规油藏直井的流动特征;该方法和物质平衡方法得到的动态储量误差小于5%;新方法对储层渗透率的计算更接近实际井况。该研究对断溶体油藏动态储量核算具有指导意义。

关键词: 断溶体油藏, 流动物质平衡, 拟稳态流动, 井底流压, 动态储量

Abstract: Due to the special shape of "vertical plate" in fault-karst reservoirs,it is necessary to establish a new flowing material balance(FMB) method according to its flow characteristics. The oil and gas flow model of faultkarst reservoirs was analyzed by graphic approach,and the permeability of the reservoir was calculated according to different flow characteristics and corresponding productivity equations. On this basis,a new FMB method for fault-karst reservoirs was established,and the applicability of the new method was verified by numerical model. The results show that the flow pattern of vertical wells in fault-karst reservoirs is linear flow,which is similar to that of horizontal wells in conventional reservoirs. While the flow pattern of horizontal wells in fault-karst reservoirs is radial flow,which is similar to that of vertical wells in conventional reservoirs. The dynamic reserve difference between the new method and the MBE method is less than 5%. The calculation of reservoir permeability by the new method is closer to the actual well conditions. This study provides a guideline for the dynamic reserve accounting of fault-karst reservoirs.

Key words: fault-karst reservoir, flowing material balance, pseudo steady state flow, bottom hole flowing pres sure, dynamic reserve

中图分类号: 

  • TE349
[1] 曹自成, 路清华, 顾忆, 等.塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征. 石油与天然气地质, 2020, 41(5):975-984. CAO Z C, LU Q H, GU Y, et al. Characteristics of Ordovician reservoirs in Shunbei 1 and 5 fault zones, Tarim Basin. Oil & Gas Geology, 2020, 41(5):975-984.
[2] 焦方正.塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义.石油与天然气地质, 2017, 38(5):831-839. JIAO F Z. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin. Oil & Gas Geology, 2017, 38(5):831-839.
[3] 王素英, 张翔, 田景春, 等.塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式.岩性油气藏, 2021, 33(5):81-94. WANG S Y, ZHANG X, TIAN J C, et al. Sedimentary evolution and sedimentary differentiation model of Silurian Kepingtage Formation in Shunbei area, Tarim Basin. Lithologic Reservoirs, 2021, 33(5):81-94.
[4] 王斌, 赵永强, 何生, 等.塔里木盆地顺北5号断裂带北段奥陶系油气成藏期次及其控制因素.石油与天然气地质, 2020,41(5):965-974. WANG B, ZHAO Y Q, HE S, et al. Hydrocarbon accumulation stages and their controlling factors in the northern Ordovician Shunbei 5 fault zone, Tarim Basin. Oil & Gas Geology, 2020, 41(5):965-974.
[5] 李红波, 王翠丽, 牛阁, 等.有封闭水体的缝洞型油藏动态储量评价:以塔里木盆地哈拉哈塘油田为例.新疆石油地质, 2020, 41(3):321-325 LI H B, WANG C L, NIU G, et al. Dynamic reserves evaluation of fractured-cavity reservoirs with closed water:A case from Halahatang Oilfield, Tarim Basin. Xinjiang Petroleum Geology, 2020, 41(3):321-325.
[6] 丛欣, 陈小凡, 乐平, 等.油藏开发初期动态储量计算的生产指示曲线法研究.重庆科技学院学报(自然科学版), 2019, 21(5):11-14. CONG X, CHEN X F, YUE P, et al. Study on production indication curve method for dynamic reserve calculation in early stage of reservoir development. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2019, 21(5):11-14.
[7] 王建民, 张三, 杜伟, 等.低幅度构造对特低渗透油藏油气水富集及开发动态的控制效应.石油勘探与开发, 2019, 46(4):728-738. WANG J M, ZHANG S, DU W, et al. The control effect of lowamplitude structure on oil-gas-water enrichment and development performance of ultra-low permeability reservoirs. Petroleum Exploration and Development, 2019, 46(4):728-738.
[8] 张晨朔, 韩征, 冯志刚, 等.基于状态方程的溶解气回注油藏物质平衡计算方法.科学技术与工程, 2020, 20(24):9851-9855. ZHANG C S, HAN Z, FENG Z G, et al. Material balance equation calculations for solution gas reinjection reservoir with the equation of state. Science Technology and Engineering, 2020, 20(24):9851-9855.
[9] MATTAR L, ANDERSON D, STOTTS G. Dynamic material balance:Oil-or gas-in-place without shut-ins. The Journal of Canadian Petroleum Technology, 2006, 45(11):7-10.
[10] YOU X T, JIA C S, LIU J Y, et al. A new production data analysis method of shale gas:Based on flowing material balance theory and considering the complex flow mechanisms of multiple pressure systems. Energy Procedia, 2019, 158:3626-3632.
[11] HAN G F, LIU M, LI Q. Flowing material balance method with adsorbed phase volumes for unconventional gas reservoirs. Energy Exploration & Exploitation, 2019, 38(2):519-532.
[12] XU Y M, ADEFIDIPE O, HASSAN D, et al. A flowing material balance equation for two-phase flowback analysis. Journal of Petroleum Science & Engineering, 2016, 142:170-185.
[13] HE L, MEI H Y, HU X R, et al. Advanced flowing material balance to determine original gas in place of shale gas considering adsorption hysteresis. SPE Reservoir Evaluation & Engineering, 2019, 22(4):1282-1292.
[14] 蔡珺君, 唐青松, 欧家强, 等.考虑水侵的异常高压气藏流动物质平衡.断块油气田, 2019, 26(5):596-600. CAI J J, TANG Q S, OU J Q, et al. Flow mass balance in overpressured gas reservoirs considering water influx. Fault-Block Oil & Gas Field, 2019, 26(5):596-600.
[15] SUN Z, SHI J T, ZHANG T, et al. The modified gas-water two phase version flowing material balance equation for low permeability CBM reservoirs. Journal of Petroleum Science and Engineering, 2018, 165:726-735.
[16] 黄发木, 许明静.流动物质平衡法在复杂气藏中的适用性研究.重庆科技学院学报(自然科学版), 2016, 18(1):25-27. HUANG F M, XU M J. Application of flowing material balance method in the calculation of reserves in complex gas reservoir. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2016, 18(1):25-27.
[17] 吕心瑞, 刘中春, 朱桂良.基于PDA方法的缝洞型油藏井控储量评价.断块油气田, 2017, 24(2):233-237. LYU X R,LIU Z C,ZHU G L. Well-controlled reserves evaluation of fracture vuggy reservoirs based on PDA method. FaultBlock Oil & Gas Field, 2017, 24(2):233-237.
[18] 朱桂良, 刘中春, 康志江.缝洞型碳酸盐岩油藏大尺度试井新方法.科学技术与工程, 2014, 14(13):172-175. ZHU G L, LIU Z C, KANG Z J. The new method of large scale well test in fractured-vuggy carbonate reservoirs. Science Technology and Engineering, 2014, 14(13):172-175.
[19] 刘哲.顺北弱挥发性碳酸盐岩油藏合理开发方式研究.成都:成都理工大学, 2018. LIU Z. The reasonable development mode of weak volatile oil and carbonate reservoir in Shunbei zone. Chengdu:Chengdu University of Technology, 2018.
[20] 黄鑫. 顺北地区中下奥陶统储层特征及成因研究.成都:成都理工大学, 2019. HUANG X. Characteristics and genesis of the Middle and Lower Ordovician reservoirs in the Shunbei area. Chengdu:Chengdu University of Technology, 2019
[21] CHAUDHRY A U. Oil well testing handbook. Burlington:Gulf Professional Publishing, 2004:44-84.
[22] 杨美华, 钟海全, 李颖川.缝洞型碳酸盐岩油藏新型油藏生产指示曲线.岩性油气藏, 2021, 33(2):163-170. YANG M H, ZHONG H Q, LI Y C. New production index curve of fractured-vuggy carbonate reservoirs. Lithologic Reservoirs, 2021, 33(2):163-170.
[1] 钟海全,周俊杰,李颖川,蒲浩,谭燕. 流动物质平衡法计算低渗透气藏单井动态储量[J]. 岩性油气藏, 2012, 24(3): 108-111.
[2] 陈恒,杜建芬,郭平,刘东华,肖峰,杨作明. 裂缝型凝析气藏的动态储量和水侵量计算研究[J]. 岩性油气藏, 2012, 24(1): 117-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘建新, 雍学善, 吴会良, 刘军迎, 张继娟, 郭旋. 苏里格气田盒8 段地震多技术储层沉积相研究[J]. 岩性油气藏, 2007, 19(2): 80 -83 .
[2] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[3] 李书恒, 赵继勇, 崔攀峰, 杨金龙, 陈文龙. 超低渗透储层开发技术对策[J]. 岩性油气藏, 2008, 20(3): 128 -131 .
[4] 王雷,刘国涛,龙涛,马驰. 一种曲流河点坝体内部侧积体描述方法[J]. 岩性油气藏, 2008, 20(4): 132 -134 .
[5] 康园园,邵先杰,石磊,单宇,于航. 煤层气开发目标区精选体系与方法研究[J]. 岩性油气藏, 2011, 23(1): 62 -66 .
[6] 张涛,张拭颖. 洪泽凹陷近岸水下扇油气成藏特征[J]. 岩性油气藏, 2011, 23(5): 56 -59 .
[7] 覃伟,李仲东,郑振恒,赵建成. 鄂尔多斯盆地大牛地气田地层水特征及成因分析[J]. 岩性油气藏, 2011, 23(5): 115 -120 .
[8] 王德龙,郭平,陈恒,付微风,汪忠德,丁洪坤. 新吸附气藏物质平衡方程推导及储量计算[J]. 岩性油气藏, 2012, 24(2): 83 -86 .
[9] 张新春,杨兴利,师晓伟. “三低”油藏空气泡沫驱低温氧化可行性研究———以甘谷驿油田唐80区块为例[J]. 岩性油气藏, 2013, 25(2): 86 -91 .
[10] 韩长城,林承焰,马存飞. 地震多属性优选技术在碳酸盐岩缝洞型储层预测中的应用[J]. 岩性油气藏, 2013, 25(6): 67 -70 .