岩性油气藏 ›› 2023, Vol. 35 ›› Issue (1): 96–107.doi: 10.12108/yxyqc.20230109

• 地质勘探 • 上一篇    下一篇

柴达木盆地大风山凸起地层压力预测及成因分析

杨韬政1,2, 刘成林1,2, 田继先3, 李培1,2, 冉钰1,2, 冯德浩1,2, 李国雄1,2, 吴育平1,2   

  1. 1. 中国石油大学(北京)油气资源育探测国家重点实验室, 北京 102249;
    2. 中国石油大学(北京)地球科学学院, 北京 102249;
    3. 中国石油勘探开发研究院, 北京 100083
  • 收稿日期:2022-05-06 修回日期:2022-06-06 出版日期:2023-01-01 发布日期:2023-01-06
  • 第一作者:杨韬政,(1998-),男,中国石油大学(北京)在读博士研究生,研究方向为超压预测、成因与演化。地址:(102249)中国石油大学(北京)油气资源育探测国家重点实验室。Email:yangtaozheng@126.com
  • 通信作者: 刘成林(1970-),男,博士,教授,博士生导师,从事油气资源评价与非常规油气地质方面的教学与研究工作。Email:liucl@cup.edu.cn。
  • 基金资助:
    国家自然科学基金面上项目“咸化湖盆条件下盐类对地层超压的作用机制研究”(编号: 41872127)资助

Prediction and genesis of formation pressure in Dafengshan uplift, Qaidam Basin

YANG Taozheng1,2, LIU Chenglin1,2, TIAN Jixian3, LI Pei1,2, RAN Yu1,2, FENG Dehao1,2, LI Guoxiong1,2, WU Yuping1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China;
    3. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
  • Received:2022-05-06 Revised:2022-06-06 Online:2023-01-01 Published:2023-01-06

摘要: 地层超压预测对油气成藏的研究具有重要意义。通过测井曲线组合、声波速度-垂向有效应力交会图、声波速度-密度交会图和超压综合分析等方法,对柴达木盆地大风山凸起各层位的超压成因进行了分析,并对压力预测方法进行了改进。研究结果表明: ①柴达木盆地大风山凸起下油砂山组地层超压成因为不均衡压实和构造挤压作用;上干柴沟组和下干柴沟组上段超压成因为不均衡压实、构造挤压和超压传递。②用单一方法如平衡深度法或伊顿法均无法有效预测研究区的地层压力,基于不同超压成因机制的差异,对下油砂山组地层压力采用平衡深度法计算,对上干柴沟组和下干柴沟组上段则使用伊顿法计算,结果更准确。研究区压力计算结果与实测地层压力的误差小于 7.00%,平均误差为4.30%。③超压的预测可为油藏描述、储量估算、安全钻井作业提供数据支持。超压是油气运移的动力,可以指示油气运移的方向,估算油气运移距离,对油气成藏的研究具有重要指导意义。

关键词: 平衡深度法, 超压成因, 不均衡压实, 构造挤压, 超压传递, 大风山凸起, 柴达木盆地

Abstract: Overpressure prediction is of great significance to the study of oil and gas accumulation. By means of logging curve combination,cross plot of acoustic velocity and vertical effective stress,cross plot of acoustic velocity and density,and overpressure comprehensive analysis,the overpressure causes of each layer in Dafengshan uplift of Qaidam Basin were analyzed,and the pressure prediction method was improved. The results show that: (1) The overpressure of Xiayoushashan Formation in Dafengshan uplift of Qaidam Basin is caused by uneven compaction and tectonic compression,and the overpressure of Shangganchaigou Formation and upper Xiaganchaigou Formation is caused by uneven compaction,tectonic compression and overpressure transmission. (2) Single methods such as equilibrium depth method or Eaton method cannot be effectively used to predict the formation pressure in the study area. Based on the difference of different overpressure genesis mechanisms,the equilibrium depth method was used to calculate the formation pressure of Xiayoushashan Formation,and the Eaton method was used to calculate the formation pressure of Shangganchaigou Formation and upper Xiaganchaigou Formation,with more accurate results. The error between the calculated pressure and the measured formation pressure in the study area is less than 7.00%,and the average error is 4.30%. (3) Overpressure prediction can provide data support for reservoir description,reserve estimation and safe drilling operation. Overpressure is the driving force of oil and gas migration. It can be used to indicate the direction of oil and gas migration and estimate the distance of oil and gas migration,which has important guiding significance for the study of oil and gas accumulation.

Key words: equilibrium depth method, overpressure genesis, uneven compaction, tectonic compression, overpressure transmission, Dafengshan uplift, Qaidam Basin

中图分类号: 

  • TE122.2
[1] 何玉,周星,李少轩,等.渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J].岩性油气藏,2022,34 (3): 60-69. HE Yu,ZHOU Xing,LI Shaoxuan,et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin[J]. Lithologic Reservoirs, 2022,34 (3): 60-69.
[2] TINGAY M R,HILLIS R R,SWARBRICK R E,et al. Origin of overpressure and pore-pressure prediction in the Baram province,Brunei[J]. AAPG Bulletin,2009,93 (1): 51-74.
[3] HOTTMANN C E,JOHNSON R K. Estimation of formation pressures from log-derived shale properties[J]. Journal of Petroleum Technology,1965,17 (6): 717-722.
[4] EBERHART-PHILLIPS D,HAN D,ZOBACK M D. Empirical relationships among seismic velocity,effective pressure,porosity, and clay content in sandstone[J]. Geophysics,1989,54 (1): 82-89.
[5] BOWERS G L. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion,1995,10 (2): 89-95.
[6] BOWERS G L. Determining high overpressure[J]. The Leading Edge,2002,21 (2): 174-177.
[7] DUTTA N C. Geopressure prediction using seismic data: Current status and the road ahead[J]. Geophysics,2002,67 (6): 2012-2041.
[8] ZHANG J. ROEGIERS J C. Double porosity finite element method for borehole modeling[J]. Rock Mechanics and Rock Engineering,2005,38 (3): 217-242.
[9] ZHANG J. Pore pressure prediction from well logs: Methods, modifications,and new approaches[J]. Earth-Science Reviews, 2011,108 (1/2): 50-63.
[10] EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972,24 (8): 929-934.
[11] EATON B A. Graphical method predicts geopressures worldwide[J]. World Oil,1976,183: 100-104.
[12] 田晓平,张汶,周连德,等.南堡凹陷二号断裂带古生界碳酸盐岩潜山岩溶模式[J].岩性油气藏,2021,33 (6): 93-101. TIAN Xiaoping,ZHANG Wen,ZHOU Liande,et al. Karst model of Paleozoic carbonate buried hill in No.2 fault zone of Nanpu Sag[J]. Lithologic Reservoirs,2021,33 (6): 93-101.
[13] 李红. Dc指数随钻监测地层压力的应用分析[J].海洋石油, 2017,37 (3): 43-48. LI Hong. Application and analysis of monitoring formation pressure while drilling with Dc index[J]. Offshore Oil,2017,37 (3): 43-48.
[14] FILLIPPONE W R. On the prediction of abnormally pressured sedimentary rocks from seismic data[C]. Houston: Offshore Technology Conference,1979.
[15] FILLIPPONE W R. Estimation of formation parameters and the prediction of overpressures from seismic data[R]. SEG Technical Program Expanded Abstracts,1982: 502-503.
[16] 刘震,张万选,张厚福,等.辽西凹陷北洼下第三系异常地层压力分析[J].石油学报,1993,14 (1): 14-24. LIU Zhen,ZHANG Wanxuan,ZHANG Houfu,et al. An analysis of abnormal formation pressure of Paleogene in the north sag of Liaoxi depression[J]. Acta Petrolei Sinica,1993,14 (1): 14-24.
[17] GUTIERREZ M A,BRAUNSDOR N R,COUZENS B A. Calibration and ranking of pore-pressure prediction models[J]. The Leading Edge,2006,25 (12): 1516-1523.
[18] 刘成林,平英奇,郭泽清,等.柴达木盆地西北古近系新近系异常高压形成机制分析[J].地学前缘,2019,26 (3): 211-219. LIU Chenglin,PING Yingqi,GUO Zeqing,et al. Genetic mechanism of overpressure in the Paleogene and Neogene in the northwestern Qaidam Basin[J]. Earth Science Frontiers,2019, 26 (3): 211-219.
[19] 李培,刘成林,冯德浩,等.咸化湖盆地层超压特征及成因机制: 以柴达木盆地英西地区渐新统为例[J].中国矿业大学学报,2021,50 (5): 864-876. LI Pei,LIU Chenglin,FENG Dehao,et al. Overpressure characteristics and genetic mechanism of strata in salty lake basin: Taking Oligocene in Yingxi area of Qaidam Basin as an example[J]. Journal of China University of Mining and Technology,2021, 50 (5): 864-876.
[20] 王志宏,郝翠果,李建明,等.川西前陆盆地超压分布及成因机制[J].岩性油气藏,2019,31 (6): 36-43. WANG Zhihong,HAO Cuiguo,LI Jianming,et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin[J]. Lithologic Reservoirs,2019,31 (6): 36-43.
[21] FREZZOTTI M L,TECCE F,CASAGLI A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration,2012,112 (1): 1-20.
[22] OSBORNE M J,SWARBRICK R E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation[J]. AAPG Bulletin,1997,81 (6): 1023-1041.
[23] 侯志强,张书平,李军,等.西湖凹陷中部西斜坡地区超压成因机制[J].石油学报,2019,40 (9): 1059-1068. HOU Zhiqiang,ZHANG Shuping,LI Jun,et al. Genetic mechanism of overpressure in the west slope of the central Xihu Sag[J]. Acta Petrolei Sinica,2019,40 (9): 1059-1068.
[24] 李军,唐勇,吴涛,等.准噶尔盆地玛湖凹陷砾岩大油区超压成因及其油气成藏效应[J]. 石油勘探与开发,2020,47 (4): 679-690. LI Jun,TANG Yong,WU Tao,et al. Overpressure origin and its effects on petroleum accumulation in the conglomerate oil province in Mahu Sag,Junggar Basin,NW China[J]. Petroleum Exploration and Development,2020,47 (4): 679-690.
[25] 崔俊,毛建英,陈登钱,等.柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J].岩性油气藏,2022,34 (2): 45-53. CUI Jun,MAO Jianying,CHEN Dengqian,et al. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin[J]. Lithologic Reservoirs,2022,34 (2): 45-53.
[26] LIU Chenglin,LI Haohan,ZHANG Xu,et al. Geochemical characteristics of the Paleogene and Neogene saline lacustrine source rocks in the western Qaidam Basin,northwestern China[J]. Energy & Fuels,2016,30 (6): 4537-4549.
[27] 陈启林. 大型咸化湖盆地层岩性油气藏有利条件与勘探方向: 以柴达木盆地柴西南古近纪为例[J].岩性油气藏,2007, 19 (1): 46-51. CHEN Qilin. Favorable conditions and exploration prospecting of lithologic hydrocarbon reservoirs in large-scale saline lake basin: Case study on the Eogene in the southwest of Qaidam Basin[J]. Lithologic Reservoirs,2007,19 (1): 46-51.
[28] 易定红,王建功,石兰亭,等.柴达木盆地英西地区E32碳酸盐岩沉积演化特征[J].岩性油气藏,2019,31 (2): 46-55. YI Dinghong,WANG Jiangong,SHI Lanting,et al. Sedimentary evolution characteristics of E32 carbonate rocks in Yingxi area, Qaidam Basin[J]. Lithologic Reservoirs,2019,31 (2): 46-55.
[29] 李翔,王建功,张平,等.柴达木盆地英西地区E32裂缝成因与油气地质意义[J].岩性油气藏,2018,30 (6): 45-54. LI Xiang,WANG Jiangong,ZHANG Ping,et al. Fracture genesis mechanism and geological significance of E32 in Yingxi area, Qaidam Basin[J]. Lithologic Reservoirs,2018,30 (6): 45-54.
[30] 范昌育,王震亮,王爱国,等.柴达木盆地北缘鄂博梁构造带超压形成机制与高压气、水层成因[J]. 石油学报,2015,36 (6): 699-706. FAN Changyu,WANG Zhenliang,WANG Aiguo,et al. Mechanisms for overpressure generation and origin of overpressured gas and aquifer layers,Eboliang stucture belt,northern Qaidam Basin[J]. Acta Petrolei Sinica,2015,36 (6): 699-706.
[31] 冯德浩,刘成林,田继先,等.柴达木盆地西北区地层剥蚀厚度恢复及对油气成藏的启示[J].石油实验地质,2022,44 (1): 188-198. FENG Dehao,LIU Chenglin,TIAN Jixian,et al. Erosion thickness recovery and its significance to hydrocarbon accumulation in northwestern Qaidam Basin[J]. Petroleum Geology & Experiment,2022,44 (1): 188-198.
[32] 刘桃,刘景东.欠压实与流体膨胀成因超压的定量评价[J].石油学报,2018,39 (9): 971-979. LIU Tao,LIU Jingdong. Quantitative evaluation on overpressure generated from undercompaction and fluid expansion[J]. Acta Petrolei Sinica,2018,39 (9): 971-979.
[33] 赵靖舟,李军,徐泽阳.沉积盆地超压成因研究进展[J].石油学报,2017,38 (9): 973-998. ZHAO Jingzhou,LI Jun,XU Zeyang. Advances in the origin of overpressure in sedimentary basins[J]. Acta Petrolei Sinica, 2017,38 (9): 973-998.
[34] LI J,ZHAO J,HOU Z,et al. Origins of overpressure in the central Xihu depression of the East China Sea shelf basin[J]. AAPG Bulletin,2021,105 (8): 1627-1659.
[35] APLIN A C,MACLEOD G,LARTER S R,et al. Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology, 1999,16 (2): 97-110.
[36] 罗晓容.数值盆地模拟方法在地质研究中的应用[J].石油勘探与开发,2000,27 (2): 6-10. LUO Xiaorong. The application of numerical basin modeling in geological studies[J]. Petroleum Exploration and Development, 2000,27 (2): 6-10.
[37] 罗晓容.前陆盆地异常流体压力: 地质作用及其增压效率[J]. 地质科学,2013,48 (1): 32-49. LUO Xiaorong. Overpressuring in foreland basins: Geological affects and their efficiency[J]. Chinese Journal of Geology,2013, 48 (1): 32-49.
[38] 罗晓容. 构造应力超压机制的定量分析[J]. 地球物理学报, 2004,47 (6): 1086-1093. LUO Xiaorong. Quantitative analysis on overpressuring mechanism resulted from tectonic stress[J]. Chinese Journal of Geophysics,2004,47 (6): 1086-1093.
[39] 王震亮,张立宽,施立志,等.塔里木盆地克拉2 气田异常高压的成因分析及其定量评价[J].地质论评,2005,51 (1): 55-63. WANG Zhenliang,ZHANG Likuan,SHI Lizhi,et al. Genesis analysis and quantitative evaluation on abnormal high fluid pressure in the Kela-2 gas field,Kuqu Depression,Tarim Basin[J]. Geological Review,2005,51 (1): 55-63.
[40] WARBRICK R E,OSBORNE M J. Mechanisms that generate abnormal pressure: An overview[J]. Abnormal Pressure in Hydrocarbon Environments,1998,70: 13-43.
[41] 范昌育,王震亮,张凤奇.库车坳陷克拉苏冲断带传递型超压的识别、计算及其主控因素[J].中国石油大学学报 (自然科学版), 2014,38 (3): 32-38. FAN Changyu,WANG Zhenliang,ZHANG Fengqi. Identification,calculation and main controlling factors of overpressure transferred by fault in Kelasu thrust belt of Kuqa depression[J]. Journal of China University of petroleum (Edition of Natural Science), 2014,38 (3): 32-38.
[42] HUNT J M. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin,1990, 74 (1): 1-12.
[43] LIU D H,XIAO X M,MI J K,et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software-a case study of Lower Ordovician carbonates from the Lunnan Low Uplift,Tarim Basin[J]. Marine and Petroleum Geology,2003,20 (1): 29-43.
[44] 郭泽清,刘卫红,钟建华,等.柴达木盆地西部新生界异常高压: 分布、成因及对油气运移的控制作用[J].地质科学,2005, 40 (3): 376-389. GUO Zeqing,LIU Weihong,ZHONG Jianhua,et al. Overpressure in the Cenozoic of western Qaidam Basin: Distribution, generation and effect on oil-gas migration[J]. Chinese Journal of Geology,2005,40 (3): 376-389.
[45] FAN Changyu,WANG Zhenliang,WANG Aiguo,et al. Identification and calculation of transfer overpressure in the northern Qaidam Basin,northwest China[J]. AAPG Bulletin,2016,100 (1): 23-39.
[46] 李丹鹭,马劲风,李琳,等.渤中凹陷异常压力储层地层压力预测方法研究[J].地球物理学进展,2022,37 (3): 1266-1273. LI Danlu,MA Jinfeng,LI Lin,et al. Prediction method of formation pressure in abnormal pressure reservoir in Bozhong Sag[J]. Progress in Geophysics,2022,37 (3): 1266-1273.
[47] SAYERS C M,JOHNSON G M,DENYER G. Predrill porepressure prediction using seismic data[J]. Geophysics,2002,67 (4): 1286-1292.
[1] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[2] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[3] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39.
[4] 司马立强, 马骏, 刘俊丰, 杨会洁, 王亮, 赵宁. 柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价[J]. 岩性油气藏, 2023, 35(2): 1-10.
[5] 完颜泽, 龙国徽, 杨巍, 柴京超, 马新民, 唐丽, 赵健, 李海鹏. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102.
[6] 夏青松, 陆江, 杨鹏, 张昆, 杨朝屹, 聂俊杰, 朱云舫, 李立芳. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征[J]. 岩性油气藏, 2023, 35(1): 132-144.
[7] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[8] 何玉, 周星, 李少轩, 丁洪波. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏, 2022, 34(3): 60-69.
[9] 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[10] 赵思思, 李建明, 柳金城, 李积永, 崔俊. 柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造[J]. 岩性油气藏, 2022, 34(2): 66-74.
[11] 杜江民, 龙鹏宇, 秦莹民, 张桐, 马宏宇, 盛军. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏, 2021, 33(5): 1-10.
[12] 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73.
[13] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[14] 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
[15] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .