岩性油气藏 ›› 2023, Vol. 35 ›› Issue (5): 161–168.doi: 10.12108/yxyqc.20230516

• 石油工程与油气田开发 • 上一篇    

薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验

赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆   

  1. 中国石油新疆油田公司, 新疆 克拉玛依 834000
  • 收稿日期:2022-09-02 修回日期:2022-10-15 出版日期:2023-09-01 发布日期:2023-09-28
  • 第一作者:赵长虹(1983—),男,高级工程师,主要从事油气田开发方面的研究工作。地址:(834000)新疆克拉玛依市克拉玛依区宝石路278号风城油田作业区。Email:ptrzch@petrochina.com.cn。
  • 基金资助:
    国家科技重大专项 “大型油气田及煤层气开发”(编号: 2016ZX05012)、 中国石油股份有限公司重大科技专项 “注蒸汽后期提高采收率技术研究”(编号: 2016B-1401) 及新疆油田和吐哈油田勘探开发关键技术研究与应用项目 “新疆油田浅层稠油稳产提效技术研究与应用”(编号: 2017E-0408) 联合资助。

Physical simulation experiment of steam chamber evolution in compound development of thin-layer ultra-heavy oil flooding and drainage

ZHAO Changhong, SUN Xinge, LU Yingbo, WANG Li, HU Pengcheng, XING Xiangrong, WANG Guiqing   

  1. PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2022-09-02 Revised:2022-10-15 Online:2023-09-01 Published:2023-09-28

摘要: 通过对新疆风城油田F井区侏罗系齐古组油藏开展二维、三维物理模拟实验和数值模拟研究,揭示了其开发蒸汽腔的演变规律和开采机理。研究结果表明: ①在蒸汽超覆和采出点泄压牵引作用下,蒸汽腔前缘主体向水平段方向推进,蒸汽腔前缘形态由“壶嘴”形向“钟”形演化,最后变成“帽沿”形。蒸汽腔立体形态在直井周围先呈“孤岛”形,后连通成“廊桥”形,最后汇聚成一个大腔体。②根据蒸汽腔演变规律,将整个模拟实验过程划分为注采预热阶段、蒸汽腔形成阶段、蒸汽腔扩展阶段、蒸汽腔下降阶段,整个生产周期采出程度可达55.6%,油汽质量比为0.17,取得了良好的实验效果。③物理模拟实验和数值模拟结果揭示了驱泄复合开发前期蒸汽驱替、中后期重力泄油的驱油机理,表征了蒸汽腔的演变规律,为同类型油藏的高效开发提供了技术支持。

关键词: 薄层超稠油, 驱泄复合, 蒸汽腔演变, 物理模拟实验, 齐古组, 侏罗系, 风城油田

Abstract: The 2D and 3D physical simulation experiments and numerical simulation studies were carried out on the reservoirs of Jurassic Qigu Formation in F well area of Fengcheng oilfield,Xinjiang,revealing the evolution law and production mechanism in the compound development of steam chamber. The results show that:(1)Under the action of steam overlay and pressure relief traction at the recovery point,the main body of the leading edge of the steam chamber advanced to the horizontal section,and the shape of the leading edge of the steam chamber evolved from “spout” type to “bell” type,and finally became “cap” type. The three-dimensional shape of the steam chamber first presented an “isolated island” type around the vertical well,then connected into a “corridor bridge” type,and finally converged into a large cavity.(2)According to the evolution law of steam chamber, the whole simulation experiment process was divided into injection-production connection stage,steam chamber formation stage,steam chamber lateral expansion stage and steam chamber decline stage. The recovery rate of the whole production cycle can reach 55.6%,the oil-steam ratio is 0.17,and good experimental results have been obtained.(3)The physical simulation experiment and numerical simulation results reveal the oil displacement mechanism of steam displacement in the early stage and gravity drainage in the middle and later stage of compound development,characterizing the evolution law of steam chamber,which provide technical support for the efficient development of similar reservoirs.

Key words: thin-layer ultra-heavy oil, flooding and drainage, steam chamber evolution, physical simulation experiment, Qigu Formation, Jurassic, Fengcheng oilfield

中图分类号: 

  • TE345
[1] 方吉超,李晓琦,计秉玉,等.中国稠油蒸汽吞吐后提高采收率接替技术前景[J].断块油气田, 2022, 29(3):378-382. FANG Jichao, LI Xiaoqi, JI Bingyu, et al. Prospect of replacement technology for enhanced oil recovery after cyclic steam stimulation of heavy oil in China[J]. Fault-Block Oil & Gas Field, 2022, 29(3):378-382.
[2] 李相方,马宏斌,杨戬,等.蒸汽驱机理再认识及全生命周期开发研究[J].特种油气藏, 2020, 27(6):67-74. LI Xiangfang, MA Hongbin, YANG Jian, et al. Re-understanding of steam flooding mechanism and research on full life cycle development[J]. Special Oil & Gas Reservoirs, 2020, 27(6):67-74.
[3] 钱根葆,孙新革,赵长虹,等.驱泄复合开采技术在风城超稠油油藏中的应用[J].新疆石油地质, 2015, 36(6):733-737. QIAN Genbao, SUN Xinge, ZHAO Changhong, et al. Application of vertical-horizontal steam drive process to Fengcheng extraheavy oil reservoir, Junggar Basin[J]. Xinjiang Petroleum Geology, 2015, 36(6):733-737.
[4] 于天忠,张建国,叶双江,等.辽河油田曙一区杜84块超稠油油藏水平井热采开发技术研究[J].岩性油气藏, 2011, 23(6):114-119. YU Tianzhong, ZHANG Jianguo, YE Shuangjiang, et al. Development technology with thermal recovery for horizontal well of superheavy oil reservoir in Du 84 block in Shu 1 area, Liaohe Oilfield[J]. Lithologic Reservoirs, 2011, 23(6):114-119.
[5] 田鸿照,孙野.直井与水平井组合吞吐转汽驱操作参数优选[J].岩性油气藏, 2013, 25(3):127-130. TIAN Hongzhao, SUN Ye. Operation parameters optimization of steam flooding with the combination of vertical and horizontal wells[J]. Lithologic Reservoirs, 2013, 25(3):127-130.
[6] 孙新革,赵长虹,熊伟,等.风城浅层超稠油蒸汽吞吐后期提高采收率技术[J].特种油气藏, 2018, 25(3):72-76. SUN Xinge, ZHAO Changhong, XIONG Wei, et al. Enhanced oil recovery in the late stage of shallow super-heavy oil reservoir with steam huff-puff in Fengcheng Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25(3):72-76.
[7] 朱云鹏,晏耿成,郑刚,等.直井-水平井辅助重力泄油数值模拟原理及应用[J].科学技术与工程, 2021, 21(30):12916-12924. ZHU Yunpeng, YAN Gengcheng, ZHENG Gang, et al. Principle and application of numerical simulation analysis of vertical well and horizontal well assisted gravity drainage[J]. Science Technology and Engineering, 2021, 21(30):12916-12924.
[8] 卢迎波.超稠油注气次生泡沫油生成机理及渗流特征[J].岩性油气藏, 2022, 34(6):152-159. LU Yingbo. Formation mechanism and percolation characteristics of secondary foamy oil by gas injection in super heavy oil[J]. Lithologic Reservoirs, 2022, 34(6):152-159.
[9] 杨建平,王诗中,林日亿,等.过热蒸汽辅助重力泄油吞吐预热模拟及方案优化[J].中国石油大学学报(自然科学版), 2020, 44(3):105-113. YANG Jianping, WANG Shizhong, LIN Riyi, et al. Simulation and scheme optimization of using superheated steam for huff and puff for preheating in SAGD[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(3):105-113.
[10] 杜旭林,戴宗,辛晶,等.强底水稠油油藏水平井三维水驱物理模拟实验[J].岩性油气藏, 2020, 32(2):141-148. DU Xulin, DAI Zong, XIN Jing, et al. Three-dimensional water flooding physical simulation experiment of horizontal well in heavy oil reservoir with strong bottom water[J]. Lithologic Reservoirs, 2020, 32(2):141-148.
[11] 任宝铭.直井-水平井组合SAGD物理模拟研究[J].中外能源, 2018, 23(1):27-31. REN Baoming. SAGD physical simulation for vertical-horizontal well combination[J]. Sino-Global Energy, 2018, 23(1):27-31.
[12] 马奎前,刘东,黄琴.渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J].岩性油气藏, 2022, 34(5):152-161. MA Kuiqian, LIU Dong, HUANG Qin. Physical simulation experiment of steam flooding in horizontal wells of Neogene heavy oil reservoir in Lvda Oilfield, Bohai Sea[J]. Lithologic Reservoirs, 2022, 34(5):152-161.
[13] GUO Erpeng, WANG Hongyuan. Surveillance of steam assisted gravity drainage in in-depth extra-heavy oil reservoir[R]. SPE 190442, 2018:59-71.
[14] GAO Yongrong, GUO Erpeng, LUO Jian, et al. Case study on a new approach for exploiting heavy oil reservoirs with shale barriers[R]. SPE 179770, 2016:112-117.
[15] WANG H Y. Application of temperature observation wells during operations in a medium deep bitumen reservoir[J]. Journal of Canadian Petroleum Technology, 2009, 48(11):11-15.
[16] GUINAND P, RUIZ F, MAGO R, et al. Drilling the first SAGD wells in the Orinoco oil-belt bare field:A case history[R]. SPE 163059, 2011:72-79.
[17] LOPAREV D S, CHERTENKOV M V, BUSLAEV G V, et al. Improvement of drilling technology for the yarega heavy oil field development by SAGD method with counter producing and injecting wells (Russian)[R]. SPE 171275, 2014:72-79.
[18] SUN Fengrui, YAO Yuedong, LI Xiangfang, et al. Type curve analysis of superheated steam flow in offshore horizontal wells[J]. International Journal of Heat & Mass Transfer, 2017, 113:850-860.
[19] 张楠,卢祥国,刘进祥,等.渤海LD5-2油藏复合调驱效果物理模拟实验研究[J].油气藏评价与开发, 2020, 10(4):119-124. ZHANG Nan, LU Xiangguo, LIU Jinxiang, et al. Physical simulation experiment study on effect of profile modification in Bohai LD5-2 reservoir[J]. Reservoir Evaluation and Development, 2020, 10(4):119-124.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[3] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[4] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[5] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[6] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[7] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[8] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[9] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[10] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[11] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[12] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[13] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[14] 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158.
[15] 刘国勇, 许多年, 胡婷婷, 潘树新, 潘拓, 王国栋, 马永平, 关新. 准噶尔盆地沙湾凹陷侏罗系八道湾组滩砂的发现及石油地质意义[J]. 岩性油气藏, 2023, 35(5): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .