岩性油气藏 ›› 2024, Vol. 36 ›› Issue (6): 89–97.doi: 10.12108/yxyqc.20240609

• 地质勘探 • 上一篇    下一篇

吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分

苟红光1, 林潼2, 房强3,4, 张华1, 李山3,4, 程祎1, 尤帆1   

  1. 1. 中国石油吐哈油田公司 勘探开发研究院, 新疆 哈密 839009;
    2. 中国石油勘探开发研究院, 北京 100083;
    3. 中国地质大学(北京)生物地质与环境地质国家重点实验室, 北京 100083;
    4. 中国地质大学(北京)海洋学院, 北京 100083
  • 收稿日期:2024-03-20 修回日期:2024-05-21 出版日期:2024-11-01 发布日期:2024-11-04
  • 第一作者:苟红光(1972—),男,高级工程师,主要从事油气勘探方面的研究工作。地址:(839009)新疆哈密市石油基地吐哈勘探开发研究院。Email:gouhongguang@petrochina.com.cn
  • 通信作者: 房强(1986—),男,博士,副教授,主要从事地层学与海洋地质学方面的教学与研究工作。Email:fangqiang-geo@hotmail.com
  • 基金资助:
    国家自然科学基金委企业创新发展联合基金“环青藏高原盆山体系动力学与天然气富集机理”(编号:U22B6002)、中国石油天然气股份有限公司攻关性应用性科技专项“深地煤岩气成藏理论与效益开发技术研究”(编号:2023ZZ18)及中国石油“十四五”前瞻性基础性重大科技项目“不同类型大气田(区)成藏主控因素及领域评价”(编号:2021DJ0605)联合资助。

Stratigraphic division of astronomical cycle in early-middle Jurassic Shuixigou Group in the Shengbei subsag of Tuha Basin

GOU Honguang1, LIN Tong2, FANG Qiang3,4, ZHANG Hua1, LI Shan3,4, CHENG Yi1, You Fan1   

  1. 1. Research Institute of Exploration and Development, Tuha Oilfield Company, PetroChina, Hami 839009, Xinjiang, China;
    2. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, 100083, China;
    3. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences(Beijing), Beijing 100083, China;
    4. School of Ocean Sciences, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2024-03-20 Revised:2024-05-21 Online:2024-11-01 Published:2024-11-04

摘要: 根据自然伽马测井数据,对吐哈盆地胜北洼陷沁探1井中下侏罗统水西沟群开展旋回地层学分析和沉积噪声模拟,并利用识别出的地层中的米兰科维奇旋回信号来研究地球轨道周期对湖平面变化的驱动作用,进而进行天文旋回地层划分。研究结果表明:①吐哈盆地胜北洼陷中下侏罗统水西沟群在自然伽马曲线中可识别出12.8~51.1 m,3.0~11.9 m,1.1~3.6 m和1.3~2.4 m的沉积旋回,比例关系为21.0∶5.0∶1.5∶1.0。根据天文调谐与相关系数估算出水西沟群沉积速率为3.3~11.7 cm·ka-1。②天文调谐后的时间域序列显示水西沟群长偏心率周期为405 ka、短偏心率周期为99~131 ka、斜率周期为32.6~35.0 ka、岁差周期为20.0~24.8 ka,证明吐哈盆地中下侏罗统沉积过程受到米兰科维奇旋回控制。沁探1井八道湾组(未钻穿)、三工河组和西山窑组的持续时间分别为3.0±0.1 Ma,4.1±0.1 Ma和9.0±0.1 Ma。③地球轨道旋回对陆相湖盆的湖平面升降具有明显的驱动作用,沁探1井水西沟群的沉积噪声模拟证明了~1.5 Ma超长周期可控制台北凹陷早—中侏罗世湖平面的变化。

关键词: 旋回地层学, 米兰科维奇旋回, 天文年代标尺, 沉积速率, 沉积噪声模拟, 湖平面变化, 水西沟群, 侏罗系, 胜北洼陷, 吐哈盆地

Abstract: The natural gamma-ray(GR)logging data of the early-middle Jurassic Shuixigou Group from QinTan 1 borehole in Shengbei subsag,Tuha basin,was selected to analyze cyclostratigraphy and simulate sedimentary noise for the identification of stratigraphic Milankovitch signals and determination of the Earth’s orbital cycle’s forcing the lake level variations within the Tuha Basin. The stratigraphic division of Shuixigou Group was ana lyzed. The results show that:(1)The sedimentary cycles of 12.8~51.1 m,3~11.9 m,1.1~3.6 m,and 1.3~ 2.4 m were identified in the GR curves of the Early-Middle Jurassic Shuixigou Group in the Shengbei subsag of Tuha Basin,with a ratio of 21∶5∶1.5∶1,and the sedimentary rates of the Shuixigou Group are estimated as 3.6~ 11.7 cm·ka-1 through astronomical calibration and correlation coefficient.(2)The sedimentary records of the Shuixigou Group were forced by the Milankovitch cycles,as evidenced by the presence of 405 ka long eccentricity, 99~131 ka short eccentricity,32.6~35.0 ka obliquity,and 20.0~24.8 ka precession cycles during the Middle and Early Jurassic in Tuha basin. The durations of Badaowan Formation(not drilled through),Sangonghe Formation and Xishanyao Formation in Qintan 1 borehole are 3.0 ±0.1 Ma,4.1 ±0.1 Ma and 9.0 ±0.1 Ma, respectively.(3)The fluctuation of lake level forced by the Earth’s orbital cycles of terrestrial lake basins,the simulation of lake level change by sedimentary noise confirms that the ultra-long period of ~1.5 Ma forced the lake level change of the Shuixigou Group in Taibei sag.

Key words: cyclostratigraphy, Milankovitch cycles, astronomical time scale, sedimentary rate, simulate sedimentary noise, lake level variations, Shuixigou Group, Jurassic, Shengbei subsag, Tuha Basin

中图分类号: 

  • TE121.3
[1] 党犇,赵虹,周立发. 台北凹陷侏罗系储层次生孔隙特征及形成机理[J]. 西北大学学报(自然科学版),2002,32(3):281-285. DANG Ben,ZHAO Hong,ZHOU Lifa. Fundmental character istics and formation mechanism of secondary porosity in Juras sic reservoirs in Taibei Depression,Turpan-Hami Basin[J]. Journal of Northwest University(Natural Science Edition), 2002,32(3):281-285.
[2] 支东明,李建忠,陈旋,等. 吐哈探区深层油气勘探进展及潜力评价[J]. 新疆石油地质,2023,44(3):253-264. ZHI Dongming,LI Jianzhong,CHEN Xuan,et al. Exploration Progress and Potential Evaluation of Deep Oil and Gas in Turpan-Hami Exploration Area[J]. Xinjiang Petroleum Geology,2023,44(3):253-264.
[3] 梁世君,钱峰,肖冬生. 吐哈盆地台北凹陷吉7H井侏罗系致密砂岩油气藏勘探发现与启示[J]. 中国石油勘探,2022,27(1):50-59. LIANG Shijun,QIAN Feng,XIAO Dongsheng. Exploration discovery and implications of the Jurassic tight sandstone oil and gas reservoir in Well Ji7H in Taibei Sag,Turpan-Hami Ba sin[J]. China Petroleum Exploration,2022,27(1):50-59.
[4] 王永栋,江德昕,杨惠秋,等. 新疆吐鲁番—鄯善地区中侏罗世孢粉组合[J]. 植物学报,1998,40(10):969-976. WANG Yongdong,JIANG Dexin,YANG Huiqiu,et al. Middle Jurassic Spore-Pollen Assemblages From Turpan-Shanshan Area, Xinjiang[J]. Acta Botanica Sinica,1998,40(10):969-976.
[5] 邓胜徽,卢远征,赵怡,等. 中国侏罗纪古气候分区与演变[J]. 地学前缘,2017,24(1):106-142. DENG Shenghui,LU Yuanzheng,ZHAO Yi,et al. The Jurasic palaeoclimate regionalization and evolution of China[J]. Earth Science Frontiers,2017,24(1):106-142.
[6] 池建强,靳军,肖继南,等. 准噶尔盆地西南缘四棵树地区西山窑组孢粉组合及古气候意义[J]. 地质论评,2022,68(1):69-79. CHI Jianqiang,JIN Jun,XIAO Jinan,et al. Palynological as semblage from the Xishanyao Formation in Sikeshu area,south western margin of the Junggar Basin,and its paleoclimate sig nificance[J]. Geological Review,2022,68(1):69-79.
[7] 孙峰. 新疆吐鲁番七泉湖煤田早、中侏罗世孢粉组合[J]. 植物学报,1989,31(8):638-646. SUN Feng. Early And Middle Jurassic Sporo-Pollen Assem blages of Qiquanhu Coal-Field of Turpan,Xinjiang[J]. Acta Botanica Sinica,1989,31(8):638-646.
[8] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学——中国地质大学学报,2011,36(3): 409-428. WU Huaichun,ZHANG Shihong,FENG Qinglai,et al. Theo retical Basis,Research Advancement and Prospects of Cy clostratigraphy[J]. Earth Science-Journal of China University of Geosciences,2011,36(3):409-428.
[9] 田军,吴怀春,黄春菊,等. 从40万年长偏心率周期看米兰科维奇理论[J]. 地球科学,2022,47(10):3543-3568. TIAN Jun,WU Huaichun,HUANG Chunju,et al. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle[J]. Earth Science,2022,47(10): 3543-3568.
[10] 闫建平,言语,彭军,等. 天文地层学与旋回地层学的关系、研究进展及其意义[J]. 岩性油气藏,2017,29(1):147-156. YAN Jianping,YAN Yu,PENG Jun,et al. The research progress,significance and relationship of astrostratigraphy with cyclostratigraphy[J]. Lithologic Reservoirs,2017,29(1):147-156.
[11] HUANG He,GAO Yuan,JONES M M,et al. Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China[J]. Palaeogeography Pa laeoclimatology Palaeoecology,2020,550:1-15.
[12] HUANG Wentao,WU Huaichun,FANG Qiang,et al. Orbitally forced organic matter accumulation recorded in an Early Perm ian mid-latitude palaeolake[J]. Palaeogeography,Palaeoclima tology,Palaeoecology,2022,606:1-13.
[13] 张天舒,朱如凯,蔡毅,等. 松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律[J]. 石油与天然气地质,2023,44(4):869-886. ZHANG Tianshu,ZHU Rukai,CAI Yi,et al. Distribution of or ganic matter in the Qingshankou Formation Shale,Gulong Sag, Songliao Basin observed within an isochronous sequence strati graphic framework[J]. Oil and Gas Geology,2023,44(4): 869-886.
[14] HUANG He,GAO Yuan,MA C,et al. Organic carbon burial is paced by a ~173 ka obliquity cycle in the middle to high lati tudes[J]. Science Advances,2021,7(28):1-10.
[15] LI Mingsong,HINNOV L A,HUANG Chunju,et al. Sedimen tary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications,2018,9(1): 1-12.
[16] WANG Meng,CHEN Honghan,HUANG Chunju,et al. Astro nomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China [J]. Earth and Planetary Science Letters,2020,535:1-13.
[17] ZHANG Zhifeng,HUANG Yongjian,LI Mingsong,et al. Obliquity-forced aquifer-eustasy during the Late Cretaceous greenhouse world[J]. Earth and Planetary Science Letters, 2022,596:1-12.
[18] CHEN Jianping,QIN Yong,HUFF B G,et al. Geochemical evi dence for mudstone as the possible major oil source rock in the Jurassic Turpan Basin,Northwest China[J]. Org Geochem, 2001,32(9):1103-1125.
[19] SHEN Tianyi,CHEN Yue,WANG Guocan,et al. Detrital zir con geochronology analysis of the Late Mesozoic deposition in the Turpan-Hami basin:Implications for the uplift history of the Eastern Tian Shan,north-western China[J]. Terra Nova, 2020,32(2):166-178.
[20] 陈旋,王居峰,肖冬生,等. 台北凹陷下侏罗统致密砂岩气成藏条件与勘探方向[J]. 新疆石油地质,2022,43(5):505-512. CHEN Xuan,WANG Jufeng,XIAO Dongsheng,et al. Accumu lation Conditions and Exploration Direction of Lower Jurassic Tight Sandstone Gas Reservoirs in Taibei Sag[J]. Xinjiang Pe troleum Geology,2022,43(5):505-512.
[21] 杨占龙,彭立才,陈启林,等. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏,2007,19(1):62-67. YANG Zhanlong,PENG Licai,CHEN Qilin,et al. Petroleum accumulation condition analysis and lithologic reservoir explo ration in Shengbei Depression of Turpan-harmy Basin[J]. Lithologic Reservoirs,2007,19(1):62-67.
[22] 吴青鹏,杨占龙,姚军,等. 吐哈盆地北部山前带中下侏罗统水西沟群成藏条件及勘探方向[J]. 岩性油气藏,2021,33(6):1-11. WU QingPeng,YANG Zhanlong,YAO Jun,et al. Reservoir forming conditions and exploration prospect of Middle-Lower Jurassic Shuixigou group in northern piedmont belt of TurpanHami Basin[J]. Lithologic Reservoirs,2021,33(6):1-11.
[23] LI Mingsong,HUANG Chunju,OGG J,et al. Paleoclimate proxies for cyclostratigraphy:Comparative analysis using a Lower Triassic marine section in South China[J]. EarthScience Reviews,2019,189:125-146.
[24] THOMSON D J. Spectrum Estimation and Harmonic-Analysis [J]. Proceedings of the Ieee,1982,70(9):1055-1096.
[25] KODAMA K,HINNOV L. Rock Magnetic Cyclostratigraphy, Wiley-Blackwell Fast-Track MonographNew Analytical Methods in Earth and Environmental Science Series[M],Chichester: John Wiley & Sons,Ltd,2015:52-89.
[26] LI Mingsong,KUMP L R,HINNOV L A,et al. Tracking vari able sedimentation rates and astronomical forcing in Phanero zoic paleoclimate proxy series with evolutionary correlation co efficients and hypothesis testing[J]. Earth and Planetary Sci ence Letters,2018,501:165-179.
[27] LI Mingsong,HINNOV L A,KUMP L. Acycle:Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences,2019,127:12-22.
[28] BERGER A,LOUTRE M F,LASKAR J. Stability of the Astro nomical Frequencies Over the Earth's History for Paleoclimate Studies[J]. Science,1992,255(5044):560-566.
[29] WALTHAM D. Milankovitch Period Uncertainties and Their Impact On Cyclostratigraphy[J]. Journal of Sedimentary Re search,2015,85(8):990-998.
[30] MEYERS S R,MALINVERNO A. Proterozoic Milankovitch cycles and the history of the solar system[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(25):6363-6368.
[31] LASKAR J,ROBUTEL P,JOUTEL F,et al. A Long-term Nu merical Solution for the Insolation Quantities of the Earth[J]. Astronomy and Astrophysics,2004,428(1):261-285.
[32] BOULILA S,GALBRUN B,HURET E,et al. Astronomical calibration of the Toarcian Stage:Implications for sequence stratigraphy and duration of the early Toarcian OAE[J]. Earth and Planetary Science Letters,2014,386:98-111.
[33] MA Chao,MEYERS S R,SAGEMAN B B. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence [J]. Nature,2017,542(7642):468-470.
[34] BOSMANS J H C,HILGEN F J,TUENTER E,et al. Obliquity forcing of low-latitude climate[J]. Climate of the Past,2015,11(10):1335-1346.
[35] HUYBERS P. Early Pleistocene glacial cycles and the inte grated summer insolation forcing[J]. SCIENCE,2006,313(5786):508-511.
[36] RAYMO M E,NISANCIOGLU K H. The 41 ka world:Mila nkovitch's other unsolved mystery[J]. Paleoceanography,2003,18(1):1011.
[37] ZHANG Tan,LI Yifan,FAN Tailiang,et al. Orbitally-paced cli mate change in the early Cambrian and its implications for the history of the Solar System[J]. Earth and Planetary Science Letters,2022,583:117420.
[38] 方旭庆,钟骑,张建国,等. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏,2024, 36(3):19-30. FANG Xuqing,ZHONG Qi,ZHANG Jianguo,et al. Cyclostratig raphy analysis and stratigraphic division of lower Sha-3 mem ber of Paleogene in Zhanhua Sag,Bohai Bay Basin[J]. Litho logic Reservoirs,2024,36(3):19-30.
[39] ZACHOS J,PAGANI M,SLOAN L,et al. Trends,rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001,292(5517):686-693.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[3] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[4] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[5] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[6] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[7] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[8] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[9] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[10] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
[11] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[12] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[13] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[14] 张坦, 贾梦瑶, 孙雅雄, 丁文龙, 石司宇, 范昕禹, 姚威. 四川盆地南部中二叠统茅口组岩溶古地貌恢复及特征[J]. 岩性油气藏, 2024, 36(1): 111-120.
[15] 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[2] 李庆忠. 岩性油气藏地震勘探若干问题讨论( Ⅰ)[J]. 岩性油气藏, 2008, 20(2): 1 -5 .
[3] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[4] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .
[5] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[6] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .
[7] 刘全新, 高建虎, 董雪华. 储层预测中的非线性反演方法[J]. 岩性油气藏, 2007, 19(1): 81 -85 .
[8] 刘伟方, 段永华, 高建虎, 张喜梅, 孙勤华. 利用地震属性预测碳酸盐岩储层[J]. 岩性油气藏, 2007, 19(1): 101 -104 .
[9] 辛广柱, 刘 赫, 彭建亮, 邵红君. 地质因素和资料因素对地震属性的影响[J]. 岩性油气藏, 2007, 19(1): 105 -108 .
[10] 郑荣才, 耿威, 周刚, 韩永林, 王海红, 文华国. 鄂尔多斯盆地白豹地区长6 砂岩成岩作用与成岩相研究[J]. 岩性油气藏, 2007, 19(2): 1 -8 .